Results 1  10
of
31
Mersenne Twister: A 623dimensionally equidistributed uniform pseudorandom number generator
"... ..."
Random number generation
"... Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0, 1) random variables (i.e., continuous random variables dis ..."
Abstract

Cited by 136 (30 self)
 Add to MetaCart
Random numbers are the nuts and bolts of simulation. Typically, all the randomness required by the model is simulated by a random number generator whose output is assumed to be a sequence of independent and identically distributed (IID) U(0, 1) random variables (i.e., continuous random variables distributed uniformly over the interval
On the Periods of Generalized Fibonacci Recurrences
, 1992
"... We give a simple condition for a linear recurrence (mod 2 w ) of degree r to have the maximal possible period 2 w 1 (2 r 1). It follows that the period is maximal in the cases of interest for pseudorandom number generation, i.e. for 3term linear recurrences dened by trinomials which are prim ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We give a simple condition for a linear recurrence (mod 2 w ) of degree r to have the maximal possible period 2 w 1 (2 r 1). It follows that the period is maximal in the cases of interest for pseudorandom number generation, i.e. for 3term linear recurrences dened by trinomials which are primitive (mod 2) and of degree r > 2. We consider the enumeration of certain exceptional polynomials which do not give maximal period, and list all such polynomials of degree less than 15. 1.
TestU01: A C library for empirical testing of random number generators
 ACM Transactions on Mathematical Software
, 2007
"... We introduce TestU01, a software library implemented in the ANSI C language, and offering a collection of utilities for the empirical statistical testing of uniform random number generators (RNGs). It provides general implementations of the classical statistical tests for RNGs, as well as several ot ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
We introduce TestU01, a software library implemented in the ANSI C language, and offering a collection of utilities for the empirical statistical testing of uniform random number generators (RNGs). It provides general implementations of the classical statistical tests for RNGs, as well as several others tests proposed in the literature, and some original ones. Predefined tests suites for sequences of uniform random numbers over the interval (0, 1) and for bit sequences are available. Tools are also offered to perform systematic studies of the interaction between a specific test and the structure of the point sets produced by a given family of RNGs. That is, for a given kind of test and a given class of RNGs, to determine how large should be the sample size of the test, as a function of the generator’s period length, before the generator starts to fail the test systematically. Finally, the library provides various types of generators implemented in generic form, as well as many specific generators proposed in the literature or found in widelyused software. The tests can be applied to instances of the generators predefined in the library, or to userdefined generators, or to streams of random numbers produced by any kind of device or stored in files. Besides introducing TestU01, the paper provides a survey and a classification of statistical tests for RNGs. It also applies batteries of tests to a long list of widely used RNGs.
Random Number Generators for Parallel Computers
 The NHSE Review
, 1997
"... Random number generators are used in many applications, from slot machines to simulations of nuclear reactors. For many computational science applications, such as Monte Carlo simulation, it is crucial that the generators have good randomness properties. This is particularly true for largescale ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
Random number generators are used in many applications, from slot machines to simulations of nuclear reactors. For many computational science applications, such as Monte Carlo simulation, it is crucial that the generators have good randomness properties. This is particularly true for largescale simulations done on highperformance parallel computers. Good random number generators are hard to find, and many widelyused techniques have been shown to be inadequate. Finding highquality, efficient algorithms for random number generation on parallel computers is even more difficult. Here we present a review of the most commonlyused random number generators for parallel computers, and evaluate each generator based on theoretical knowledge and empirical tests. In conclusion, we provide recommendations for using random number generators on parallel computers. Outline This review is organized as follows: A brief summary of the findings of this review is first presented, giving an overview of the use of parallel random number generators and a list of recommended algorithms. Section 1 is an introduction to random number generators and their use in computer simulations on parallel computers. Section 2 is a summary of the methods used to test and evaluate random number generators, on both sequential and parallel computers. Section 3 gives an overview of the main algorithms used to implement random number generators on sequential computers, provides examples of software implementations of the algorithms, and states any known problems with the algorithms or implementations. Section 4 gives a description of the most common methods used to parallelize the sequential algorithms, provides examples of software implementing these algorithms, and states any known problems ...
TestU01: A Software Library in ANSI C for Empirical Testing of Random Number Generators
, 2007
"... This document describes the software library TestU01, implemented in the ANSI C language, and offering a collection of utilities for the (empirical) statistical testing of uniform random number generators (RNG). The library implements several types of generators in generic form, as well as many spec ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
This document describes the software library TestU01, implemented in the ANSI C language, and offering a collection of utilities for the (empirical) statistical testing of uniform random number generators (RNG). The library implements several types of generators in generic form, as well as many specific generators proposed in the literature or found in widelyused software. It provides general implementations of the classical statistical tests for random number generators, as well as several others proposed in the literature, and some original ones. These tests can be applied to the generators predefined in the library and to userdefined generators. Specific tests suites for either sequences of uniform random numbers in [0, 1] or bit sequences are also available. Basic tools for plotting vectors of points produced by generators are provided as well. Additional software permits one to perform systematic studies of the interaction between a specific test and the structure of the point sets produced by a given family of RNGs. That is, for a given kind of test and a given class of RNGs, to determine how large should be the sample size of the test, as a function of the generator’s period length, before the generator starts to fail the test systematically.
Random Number Generators with Period Divisible by a Mersenne Prime
 Proc. ICCSA 2003
, 2003
"... Pseudorandom numbers with long periods and good statistical properties are often required for applications in computational finance. We consider the requirements for good uniform random number generators, and describe a class of generators whose period is a Mersenne prime or a small multiple of ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
Pseudorandom numbers with long periods and good statistical properties are often required for applications in computational finance. We consider the requirements for good uniform random number generators, and describe a class of generators whose period is a Mersenne prime or a small multiple of a Mersenne prime. These generators are based on "almost primitive" trinomials, that is trinomials having a large primitive factor. They enable very fast vector/parallel implementations with excellent statistical properties.
Testing Parallel Random Number Generators
"... . A parallel random number generator (PRNG) must be tested for two types of correlations  (i) Intrastream correlation, as for any serial generator, and (ii) Interstream correlation for correlations between random number streams on different processes. Since bounds on these correlations are diffi ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
. A parallel random number generator (PRNG) must be tested for two types of correlations  (i) Intrastream correlation, as for any serial generator, and (ii) Interstream correlation for correlations between random number streams on different processes. Since bounds on these correlations are difficult to prove mathematically, large empirical tests are necessary. Many of the popular RNGs in use today were tested when computational power was much lower, and hence they were evaluated with much smaller. This paper describes several tests of PRNGs, both statistical and physicallybased tests. We show defects in several popular generators. We then present the results for the tests conducted on the SPRNG generators. These generators have passed some of the largest empirical random number tests ever undertaken. 1 Introduction Monte Carlo (MC) computations have, currently do, and will continue to consume a large fraction of all available highperformance computing cycles. MC methods can be de...
Explicit ordispersers with polylogarithmic degree
 J. ACM
, 1998
"... An (N,M,T)ORdisperser is a bipartite multigraph G = (V,W,E) withV  = N, and W  = M, having the following expansion property: any subset of V having at least T vertices has a neighbor set of size at least M/2. For any pair of constants ξ,λ,1 ≥ ξ>λ ≥ 0, any sufficiently large N, andforany (log ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
An (N,M,T)ORdisperser is a bipartite multigraph G = (V,W,E) withV  = N, and W  = M, having the following expansion property: any subset of V having at least T vertices has a neighbor set of size at least M/2. For any pair of constants ξ,λ,1 ≥ ξ>λ ≥ 0, any sufficiently large N, andforany (log N)ξ (log N)λ T ≥ 2, M ≤ 2, we give an explicit elementary construction of an (N,M,T)ORdisperser such that the outdegree of any vertex in V is at most polylogarithmic in N. Using this with known applications of ORdispersers yields several results. First, our construction implies that the complexity class StrongRP defined by Sipser, equals RP. Second, for any fixed η>0, we give the first polynomialtime simulation of RP algorithms using the output of any “ηminimally random ” source. For any integral R>0, such a source accepts a single request for an Rbit string and generates the string according to a distribution that assigns probability at most 2−Rη to any string. It is minimally random in the sense that any weaker source is
Random Number Generation and Simulation on Vector and Parallel Computers
 LECTURE NOTES IN COMPUTER SCIENCE 1470
, 1998
"... Pseudorandom numbers are often required for simulations performed on parallel computers. The requirements for parallel random number generators are more stringent than those for sequential random number generators. As well as passing the usual sequential tests on each processor, a parallel rand ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
Pseudorandom numbers are often required for simulations performed on parallel computers. The requirements for parallel random number generators are more stringent than those for sequential random number generators. As well as passing the usual sequential tests on each processor, a parallel random number generator must give dierent, independent sequences on each processor. We consider the requirements for a good parallel random number generator, and discuss generators for the uniform and normal distributions. We also describe a new class of generators for the normal distribution (based on a proposal by Wallace). These