Results 1  10
of
80
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 532 (21 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to nonlinear kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an orderofmagnitude speedup over previous SVM learning methods.
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 319 (32 self)
 Add to MetaCart
(Show Context)
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, nonnegative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to stateoftheart performance in terms of speed and optimization for both small and large data sets.
Learning midlevel features for recognition
 In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, 2010
"... Many successful models for scene or object recognition transform lowlevel descriptors (such as Gabor filter responses, or SIFT descriptors) into richer representations of intermediate complexity. This process can often be broken down into two steps: (1) a coding step, which performs a pointwise ..."
Abstract

Cited by 225 (13 self)
 Add to MetaCart
(Show Context)
Many successful models for scene or object recognition transform lowlevel descriptors (such as Gabor filter responses, or SIFT descriptors) into richer representations of intermediate complexity. This process can often be broken down into two steps: (1) a coding step, which performs a pointwise transformation of the descriptors into a representation better adapted to the task, and (2) a pooling step, which summarizes the coded features over larger neighborhoods. Several combinations of coding and pooling schemes have been proposed in the literature. The goal of this paper is threefold. We seek to establish the relative importance of each step of midlevel feature extraction through a comprehensive cross evaluation of several types of coding modules (hard and soft vector quantization, sparse coding) and pooling schemes (by taking the average, or the maximum), which obtains stateoftheart performance or better on several recognition benchmarks. We show how to improve the best performing coding scheme by learning a supervised discriminative dictionary for sparse coding. We provide theoretical and empirical insight into the remarkable performance of max pooling. By teasing apart components shared by modern midlevel feature extractors, our approach aims to facilitate the design of better recognition architectures. 1.
Natural language processing (almost) from scratch
, 2011
"... We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including partofspeech tagging, chunking, named entity recognition, and semantic role labeling. This versatility is achieved by trying to avoid taskspecific eng ..."
Abstract

Cited by 209 (17 self)
 Add to MetaCart
We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including partofspeech tagging, chunking, named entity recognition, and semantic role labeling. This versatility is achieved by trying to avoid taskspecific engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting manmade input features carefully optimized for each task, our system learns internal representations on the basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for building a freely available tagging system with good performance and minimal computational requirements.
Efficient BackProp
, 1998
"... . The convergence of backpropagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers expl ..."
Abstract

Cited by 209 (31 self)
 Add to MetaCart
. The convergence of backpropagation learning is analyzed so as to explain common phenomenon observed by practitioners. Many undesirable behaviors of backprop can be avoided with tricks that are rarely exposed in serious technical publications. This paper gives some of those tricks, and offers explanations of why they work. Many authors have suggested that secondorder optimization methods are advantageous for neural net training. It is shown that most "classical" secondorder methods are impractical for large neural networks. A few methods are proposed that do not have these limitations. 1 Introduction Backpropagation is a very popular neural network learning algorithm because it is conceptually simple, computationally efficient, and because it often works. However, getting it to work well, and sometimes to work at all, can seem more of an art than a science. Designing and training a network using backprop requires making many seemingly arbitrary choices such as the number ...
Relational Learning via Collective Matrix Factorization
, 2008
"... Relational learning is concerned with predicting unknown values of a relation, given a database of entities and observed relations among entities. An example of relational learning is movie rating prediction, where entities could include users, movies, genres, and actors. Relations would then encode ..."
Abstract

Cited by 127 (4 self)
 Add to MetaCart
(Show Context)
Relational learning is concerned with predicting unknown values of a relation, given a database of entities and observed relations among entities. An example of relational learning is movie rating prediction, where entities could include users, movies, genres, and actors. Relations would then encode users ’ ratings of movies, movies ’ genres, and actors ’ roles in movies. A common prediction technique given one pairwise relation, for example a #users × #movies ratings matrix, is lowrank matrix factorization. In domains with multiple relations, represented as multiple matrices, we may improve predictive accuracy by exploiting information from one relation while predicting another. To this end, we propose a collective matrix factorization model: we simultaneously factor several matrices, sharing parameters among factors when an entity participates in multiple relations. Each relation can have a different value type and error distribution; so, we allow nonlinear relationships between the parameters and outputs, using Bregman divergences to measure error. We extend standard alternating projection algorithms to our model, and derive an efficient Newton update for the projection. Furthermore, we propose stochastic optimization methods to deal with large, sparse matrices. Our model generalizes several existing matrix factorization methods, and therefore yields new largescale optimization algorithms for these problems. Our model can handle any pairwise relational schema and a
TaskDriven Dictionary Learning
"... Abstract—Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that ..."
Abstract

Cited by 87 (3 self)
 Add to MetaCart
(Show Context)
Abstract—Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience, and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a largescale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in largescale settings, and is well suited to supervised and semisupervised classification, as well as regression tasks for data that admit sparse representations. Index Terms—Basis pursuit, Lasso, dictionary learning, matrix factorization, semisupervised learning, compressed sensing. Ç 1
Large scale online learning
 Advances in Neural Information Processing Systems 16
, 2004
"... We consider situations where training data is abundant and computing resources are comparatively scarce. We argue that suitably designed online learning algorithms asymptotically outperform any batch learning algorithm. Both theoretical and experimental evidences are presented. 1 ..."
Abstract

Cited by 76 (6 self)
 Add to MetaCart
(Show Context)
We consider situations where training data is abundant and computing resources are comparatively scarce. We argue that suitably designed online learning algorithms asymptotically outperform any batch learning algorithm. Both theoretical and experimental evidences are presented. 1