Results 1  10
of
187
A User’s Guide to Tabu Search “,
 Annals of Oper. Reas.,
, 1993
"... Abstract We describe the main features of tabu search, emphasizing a perspective for guiding a user to widerstand basic implementation principles for solving combinatorial or nonlinear problems. We also identify recent developments and extensions that have contributed to increasing the efficiency o ..."
Abstract

Cited by 181 (2 self)
 Add to MetaCart
Abstract We describe the main features of tabu search, emphasizing a perspective for guiding a user to widerstand basic implementation principles for solving combinatorial or nonlinear problems. We also identify recent developments and extensions that have contributed to increasing the efficiency of the method. One of the useful aspects of tabu search is the ability to adapt a rudimentary prototype implementation to encompass additional model elements, such as new types of constraints and objective functions. Similarly, the method itself can be evolved to varying levels of sophistication. We provide several examples of discrete optimization problems to illustrate the strategic concerns of tabu search, and to show how they may be exploited in various contexts. Our presentation is motivated by the emergence of an extensive literature of computational results, which demonstrates that a welllWled implementation makes it possible to obtain solutions of high quality for difficult problems, yielding outcomes in some settings that have not been matched by other known techniques.
Genetic Hybrids for the Quadratic Assignment Problem
 DIMACS Series in Mathematics and Theoretical Computer Science
, 1993
"... . A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. Thes ..."
Abstract

Cited by 109 (0 self)
 Add to MetaCart
(Show Context)
. A new hybrid procedure that combines genetic operators to existing heuristics is proposed to solve the Quadratic Assignment Problem (QAP). Genetic operators are found to improve the performance of both local search and tabu search. Some guidelines are also given to design good hybrid schemes. These hybrid algorithms are then used to improve on the best known solutions of many test problems in the literature. 1. Introduction The quadratic assignment problem (QAP) can be stated as: min OE2P (n) n X i=1 n X j=1 a ij b OE(i)OE(j) ; where A = (a ij ) and B = (b kl ) are two n \Theta n matrices and P (n) is the set of all permutations of f1; :::; ng. Matrix A is often referred to as a distance matrix between sites, and B as a flow matrix between objects. In most cases, the matrices A and B are symmetrical with a null diagonal. A permutation may then be interpreted as an assignment of objects to sites with a quadratic cost associated to it. There are many applications that can be fo...
A global solution to sparse correspondence problems
 IEEE Transactions on pattern Analysis and Machine Intelligence
, 2003
"... Abstract—We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more images. This is a key step in most problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to handle most of the commonly ..."
Abstract

Cited by 72 (3 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more images. This is a key step in most problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to handle most of the commonly used assumptions in a unique formulation, independent of the domain of application and type of features. It performs correspondence and outlier rejection in a single step and achieves global optimality with feasible computation. Feature selection and correspondence are first formulated as an integer optimization problem. This is a blunt formulation, which considers the whole combinatorial space of possible point selections and correspondences. To find its global optimal solution, we build a concave objective function and relax the search domain into its convexhull. The special structure of this extended problem assures its equivalence to the original one, but it can be optimally solved by efficient algorithms that avoid combinatorial search. This methodology can use any criterion provided it can be translated into cost functions with continuous second derivatives. Index Terms—Correspondence problem, linear and concave programming, sparse stereo. 1
Probabilistic Graph and Hypergraph Matching
"... We consider the problem of finding a matching between two sets of features, given complex relations among them, going beyond pairwise. Each feature set is modeled by a hypergraph where the complex relations are represented by hyperedges. A match between the feature sets is then modeled as a hypergr ..."
Abstract

Cited by 67 (0 self)
 Add to MetaCart
(Show Context)
We consider the problem of finding a matching between two sets of features, given complex relations among them, going beyond pairwise. Each feature set is modeled by a hypergraph where the complex relations are represented by hyperedges. A match between the feature sets is then modeled as a hypergraph matching problem. We derive the hypergraph matching problem in a probabilistic setting represented by a convex optimization. First, we formalize a soft matching criterion that emerges from a probabilistic interpretation of the problem input and output, as opposed to previous methods that treat soft matching as a mere relaxation of the hard matching problem. Second, the model induces an algebraic relation between the hyperedge weight matrix and the desired vertextovertex probabilistic matching. Third, the model explains some of the graph matching normalization proposed in the past on a heuristic basis such as doubly stochastic normalizations of the edge weights. A key benefit of the model is that the global optimum of the matching criteria can be found via an iterative successive projection algorithm. The algorithm reduces to the well known Sinkhorn [15] row/column matrix normalization procedure in the special case when the two graphs have the same number of vertices and a complete matching is desired. Another benefit of our model is the straightforward scalability from graphs to hypergraphs.
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. MATRIX ANAL. APPL
, 2000
"... Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent ..."
Abstract

Cited by 53 (18 self)
 Add to MetaCart
(Show Context)
Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem.
Eigenvalues in combinatorial optimization
, 1993
"... In the last decade many important applications of eigenvalues and eigenvectors of graphs in combinatorial optimization were discovered. The number and importance of these results is so fascinating that it makes sense to present this survey. ..."
Abstract

Cited by 44 (0 self)
 Add to MetaCart
In the last decade many important applications of eigenvalues and eigenvectors of graphs in combinatorial optimization were discovered. The number and importance of these results is so fascinating that it makes sense to present this survey.
Frequency Assignment Problems
 HANDBOOK OF COMBINATORIAL OPTIMIZATION
, 1999
"... The ever growing number of wireless communications systems deployed around the globe have made the optimal assignment of a limited radio frequency spectrum a problem of primary importance. At issue are planning models for permanent spectrum allocation, licensing, regulation, and network design. Furt ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
The ever growing number of wireless communications systems deployed around the globe have made the optimal assignment of a limited radio frequency spectrum a problem of primary importance. At issue are planning models for permanent spectrum allocation, licensing, regulation, and network design. Further at issue are online algorithms for dynamically assigning frequencies to users within an established network. Applications include aeronautical mobile, land mobile, maritime mobile, broadcast, land fixed (pointto point), and satellite systems. This paper surveys research conducted by theoreticians, engineers, and computer scientists regarding the frequency assignment problem (FAP) in all of its guises. The paper begins by defining some of the more common types of FAPs. It continues with a discussion on measures of optimality relating to the use of spectrum, models of interference, and mathematical representations of the many FAPs, both in graph theoretic terms, and as mathematical pro...
Lower Bounds for the Quadratic Assignment Problem Based Upon a Dual Formulation
"... A new bounding procedure for the Quadratic Assignment Problem (QAP) is described which extends the Hungarian method for the Linear Assignment Problem (LAP) to QAPs, operating on the four dimensional cost array of the QAP objective function. The QAP is iteratively transformed in a series of equivalen ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
A new bounding procedure for the Quadratic Assignment Problem (QAP) is described which extends the Hungarian method for the Linear Assignment Problem (LAP) to QAPs, operating on the four dimensional cost array of the QAP objective function. The QAP is iteratively transformed in a series of equivalent QAPs leading to an increasing sequence of lower bounds for the original problem. To this end, two classes of operations which transform the four dimensional cost array are defined. These have the property that the values of the transformed objective function Z' are the corresponding values of the old objective function Z, shifted by some amount C. In the case that all entries of the transformed cost array are nonnegative, then C is a lower bound for the initial QAP. If, moreover, there exists a feasible solution U to the QAP, such that its value in the transformed problem is zero, then C is the optimal value of Z and U is an optimal solution for the original QAP. The transformations are iteratively applied until no significant increase in constant C as above is found, resulting in the so called Dual Procedure (DP). Several strategies are listed for appropriately determining C, or equivalently, transforming the cost array. The goal is the modification of the elements in the cost array so as to obtain new equivalent problems which bring the QAP closer to solution. In some cases the QAP is actually solved, though solution is not guaranteed. The close relationship between the DP and the Linear Programming formulation of Adams and Johnson is presented. The DP attempts to solve Adams and Johnsons CLP, a continuous relaxation of a linearization of the QAP. This explains why the DP produces bounds close to the optimum values for CLP calculated by Johnson in her dissertation and by...
Towards Systematic Design of Enterprise Networks
"... Enterprise networks are important, with size and complexity even surpassing carrier networks. Yet, the design of enterprise networks remains adhoc and poorly understood. In this paper, we show how a systematic design approach can handle two key areas of enterprise design: virtual local area network ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
Enterprise networks are important, with size and complexity even surpassing carrier networks. Yet, the design of enterprise networks remains adhoc and poorly understood. In this paper, we show how a systematic design approach can handle two key areas of enterprise design: virtual local area networks (VLANs) and reachability control. We focus on these tasks given their complexity, prevalence, and timeconsuming nature. Our contributions are threefold. First, we show how these design tasks may be formulated in terms of networkwide performance, security, and resilience requirements. Our formulations capture the correctness and feasibility constraints on the design, and they model each task as one of optimizing desired criteria subject to the constraints. The optimization criteria may further be customized to meet operatorpreferred design strategies. Second, we develop a set of algorithms to solve the problems that we formulate. Third, we demonstrate the feasibility and value of our systematic design approach through validation on a largescale campus network with hundreds of routers and VLANs.
A New Bound for the Quadratic Assignment Problem Based on Convex Quadratic Programming
 MATHEMATICAL PROGRAMMING
, 1999
"... We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the wellknown projected eigenvalue bound, and appears to be comp ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
(Show Context)
We describe a new convex quadratic programming bound for the quadratic assignment problem (QAP). The construction of the bound uses a semidefinite programming representation of a basic eigenvalue bound for QAP. The new bound dominates the wellknown projected eigenvalue bound, and appears to be competitive with existing bounds in the tradeoff between bound quality and computational effort.