Results 1  10
of
29
On the computational content of the axiom of choice
 The Journal of Symbolic Logic
, 1998
"... We present a possible computational content of the negative translation of classical analysis with the Axiom of Choice. Our interpretation seems computationally more direct than the one based on Godel's Dialectica interpretation [10, 18]. Interestingly, thisinterpretation uses a re nement of th ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
(Show Context)
We present a possible computational content of the negative translation of classical analysis with the Axiom of Choice. Our interpretation seems computationally more direct than the one based on Godel's Dialectica interpretation [10, 18]. Interestingly, thisinterpretation uses a re nement of the realizibility semantics of the absurdity proposition, which is not interpreted as the empty type here. We alsoshowhow to compute witnesses from proofs in classical analysis, and how to interpret the axiom of Dependent Choice and Spector's Double Negation Shift.
The metamathematics of ergodic theory
 THE ANNALS OF PURE AND APPLIED LOGIC
, 2009
"... The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theo ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
(Show Context)
The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns and recent applications to combinatorics and number theory force us to reconsider the constructive character of the theory and its methods. This paper surveys some recent contributions to the metamathematical study of ergodic theory, focusing on the mean and pointwise ergodic theorems and the Furstenberg structure theorem for measure preserving systems. In particular, I characterize the extent to which these theorems are nonconstructive, and explain how prooftheoretic methods can be used to locate their “constructive content.”
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
"Clarifying the Nature of the Infinite": the development of metamathematics and proof theory
, 2001
"... We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we sho ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We discuss the development of metamathematics in the Hilbert school, and Hilbert's prooftheoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how these considerations help frame our understanding of metamathematics and proof theory today.
Variable types for meaning assembly: a logical syntax for generic noun phrases introduced by ”most”. Recherches Linguistiques de Vincennes
, 2012
"... ”most” ..."
The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
, 2001
"... . After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
. After a brief flirtation with logicism in 19171920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Gttingen between 1917 and 1923, and notably in Ackermann 's dissertation of 1924. The main innovation was the invention of the ecalculus, on which Hilbert's axiom systems were based, and the development of the esubstitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the enotation and provides an analysis of Ackermann's consisten...
Minimal Invariant Spaces in Formal Topology
 The Journal of Symbolic Logic
, 1996
"... this paper, we extend our analysis to the case where X is a boolean space, that is compact totally disconnected. In such a case, we give a pointfree formulation of the existence of a minimal subspace for any continuous map f : X!X: We show that such minimal subspaces can be described as points of a ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
this paper, we extend our analysis to the case where X is a boolean space, that is compact totally disconnected. In such a case, we give a pointfree formulation of the existence of a minimal subspace for any continuous map f : X!X: We show that such minimal subspaces can be described as points of a suitable formal topology, and the "existence" of such points become the problem of the consistency of the theory describing a generic point of this space. We show the consistency of this theory by building effectively and algebraically a topological model. As an application, we get a new, purely algebraic proof, of the minimal property of [3]. We show then in detail how this property can be used to give a proof of (a special case of) van der Waerden's theorem on arithmetical progression, that is "similar in structure" to the topological proof [6, 8], but which uses a simple algebraic remark (proposition 1) instead of Zorn's lemma. A last section tries to place this work in a wider context, as a reformulation of Hilbert's method of introduction/elimination of ideal elements. 1 Construction of Minimal Invariant Subspace
Hilbert’s “Verunglückter Beweis,” the first epsilon theorem and consistency proofs. History and Philosophy of Logic
"... Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One propo ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One proposed method of giving such proofs is Hilbert’s epsilonsubstitution method. There was, however, a second approach which was not refelected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert’s first epsilon theorem and a certain “general consistency result. ” An analysis of this socalled “failed proof ” lends further support to an interpretation of Hilbert according to which he was expressly concerned with conservatitvity proofs, even though his publications only mention consistency as the main question. §1. Introduction. The aim of Hilbert’s program for consistency proofs in the 1920s is well known: to formalize mathematics, and to give finitistic consistency proofs of these systems and thus to put mathematics on a “secure foundation.” What is perhaps less well known is exactly how Hilbert thought this should be carried out. Over ten years before Gentzen developed sequent calculus formalizations
Extension without Cut
, 2008
"... In proof theory one distinguishes sequent proofs with cut and cutfree sequent proofs, while for proof complexity one distinguishes Fregesystems and extended Fregesystems. In this paper we show how deep inference can provide a uniform treatment for both classifications, such that we can define cut ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
In proof theory one distinguishes sequent proofs with cut and cutfree sequent proofs, while for proof complexity one distinguishes Fregesystems and extended Fregesystems. In this paper we show how deep inference can provide a uniform treatment for both classifications, such that we can define cutfree systems with extension, which is neither possible with Fregesystems, nor with the sequent calculus. We show that the propositional pidgeonhole principle admits polynomialsize proofs in a cutfree system with extension. We also define cutfree systems with substitution and show that the system with extension psimulates the system with substitution. This yields a new (and simpler) proof that extended Fregesystems psimulate Fregesystems with substitution. Finally, we propose a new class of tautologies that have short proofs in extended systems, but might not in Frege systems without extension.