Results 1  10
of
44
Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory
, 2003
"... Bohmian mechanics is the most naively obvious embedding imaginable of Schrödinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly nonNewtonian sort of way, one which may at first appear to have little to do with the spectrum of predict ..."
Abstract

Cited by 31 (14 self)
 Add to MetaCart
(Show Context)
Bohmian mechanics is the most naively obvious embedding imaginable of Schrödinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly nonNewtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ its configuration is typically random, with probability density ρ given by ψ², the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of “measurements. ” This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.
On schizophrenic experiences of the neutron or why we should believe in the manyworlds interpretation of quantum theory
, 1998
"... The truth about physical objects must be strange. It may be unattainable, but if any philosopher believes that he has attained it, the fact that what he offers as the truth is strange ought not to be made a ground of objection to his opinion. – Bertrand Russell 1. ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
The truth about physical objects must be strange. It may be unattainable, but if any philosopher believes that he has attained it, the fact that what he offers as the truth is strange ought not to be made a ground of objection to his opinion. – Bertrand Russell 1.
Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems
 Am. J. Phys
, 2001
"... This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality. In fact, these cor ..."
Abstract

Cited by 23 (1 self)
 Add to MetaCart
(Show Context)
This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except the very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postulate: the reduction of the state vector, which comes in addition to the Schrödinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) may be a potential source for conflicts; various attitudes that are possible
Quantum Probability from Subjective Likelihood: improving on Deutsch’s proof of the probability rule
 STUDIES IN THE HISTORY AND PHILOSOPHY OF PHYSICS, FORTHCOMING
, 2005
"... I present a proof of the quantum probability rule from decisiontheoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch’s recent proof of the probability rule, but the proof is simpler and proceeds from weaker decisiontheor ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
I present a proof of the quantum probability rule from decisiontheoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch’s recent proof of the probability rule, but the proof is simpler and proceeds from weaker decisiontheoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
On the Common Structure of Bohmian Mechanics and the GhirardiRiminiWeber Theory
, 2006
"... Bohmian mechanics and the Ghirardi–Rimini–Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonline ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
(Show Context)
Bohmian mechanics and the Ghirardi–Rimini–Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger’s equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about “matter” moving in space, represented by either particle trajectories, fields on spacetime, or a discrete set of spacetime points. The role of the wave function then is to govern the motion of the matter.
Why the Quantum?
, 2004
"... This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of informa ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of information transfer, as opposed to a theory about the mechanics of nonclassical waves or particles, (2) given the informationtheoretic constraints, any mechanical theory of quantum phenomena that includes an account of the measuring instruments that reveal these phenomena must be empirically equivalent to a quantum theory, and (3) assuming the informationtheoretic constraints are in fact satisfied in our world, no mechanical theory of quantum phenomena that includes an account of measurement interactions can be acceptable, and the appropriate aim of physics at the fundamental level then becomes the representation and manipulation of information.
TimeSymmetrized Counterfactuals in Quantum Theory,’ TelAviv University preprint TAUP
, 1997
"... Counterfactuals in quantum theory are briefly reviewed and it is argued that they are very different from counterfactuals considered in the general philosophical literature. The issue of time symmetry of quantum counterfactuals is considered and a novel timesymmetric definition of quantum counterfa ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
(Show Context)
Counterfactuals in quantum theory are briefly reviewed and it is argued that they are very different from counterfactuals considered in the general philosophical literature. The issue of time symmetry of quantum counterfactuals is considered and a novel timesymmetric definition of quantum counterfactuals is proposed. This definition is applied for analyzing several controversies related to quantum counterfactuals. 1 There are very many philosophical discussions on the concept of counterfactuals and especially on the time’s arrow in counterfactuals. There is also a considerable literature on counterfactual in quantum theory. In order to be a helpful tool in quantum theory counterfactuals have to be rigorously defined. Unfortunately, the concept of counterfactuals is vague 1 and this leads to several controversies. I, however, believe that since quantum counterfactuals appear in a much narrow context than in general discussions on counterfactuals, they can be defined unambiguously. I will briefly review counterfactuals in quantum theory and will propose a rigorous definition which can clarify several issues, in particular, those related to the timesymmetry of quantum counterfactuals.
Everett and Structure
 STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS
, 2005
"... I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines and I shall argue that much of this crit ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the view that the macroworld is instead to be understood in terms of certain structures and patterns which emerge from quantum theory (given appropriate dynamics, in particular decoherence). I extend this view to the observer, and in doing so make contact with functionalist theories of mind.
Solving the Measurement Problem: de BroglieBohm loses out to Everett
 FOUNDATIONS OF PHYSICS
, 2005
"... The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation. ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
Meaning of the wave function
 International Journal of Quantum Chemistry
"... The physical meaning of the wave function is an important interpretative problem of quantum mechanics. Notwithstanding nearly ninety years of development of the theory, it is still an unsolved issue. During recent years, more and more ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
The physical meaning of the wave function is an important interpretative problem of quantum mechanics. Notwithstanding nearly ninety years of development of the theory, it is still an unsolved issue. During recent years, more and more