Results 1  10
of
78
The complexity of computing a Nash equilibrium
, 2006
"... We resolve the question of the complexity of Nash equilibrium by showing that the problem of computing a Nash equilibrium in a game with 4 or more players is complete for the complexity class PPAD. Our proof uses ideas from the recentlyestablished equivalence between polynomialtime solvability of n ..."
Abstract

Cited by 226 (14 self)
 Add to MetaCart
We resolve the question of the complexity of Nash equilibrium by showing that the problem of computing a Nash equilibrium in a game with 4 or more players is complete for the complexity class PPAD. Our proof uses ideas from the recentlyestablished equivalence between polynomialtime solvability of normalform games and graphical games, and shows that these kinds of games can implement arbitrary members of a PPADcomplete class of Brouwer functions. 1
Intrinsic Robustness of the Price of Anarchy
"... The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract

Cited by 59 (12 self)
 Add to MetaCart
The price of anarchy (POA) is a worstcase measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regretminimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regretminimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and BayesianNash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomiallength bestresponse sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worstcase upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with nonpolynomial cost functions, and the first
On the price of anarchy and stability of correlated equilibria of linear congestion games
, 2005
"... ..."
Adaptive Heuristics
 Econometrica
, 2005
"... We exhibit a large class of simple rules of behavior, which we call adaptive heuristics, and show that they generate rational behavior in the long run. These adaptive heuristics are based on natural regret measures, and may be viewed as a bridge between rational and behavioral viewpoints. Taken toge ..."
Abstract

Cited by 48 (5 self)
 Add to MetaCart
We exhibit a large class of simple rules of behavior, which we call adaptive heuristics, and show that they generate rational behavior in the long run. These adaptive heuristics are based on natural regret measures, and may be viewed as a bridge between rational and behavioral viewpoints. Taken together, the results presented here establish a solid connection between the dynamic approach of adaptive heuristics and the static approach of correlated equilibria.
On the topologies formed by selfish peers
 In PODC ’06
"... Current peertopeer (P2P) systems often suffer from a large fraction of freeriders not contributing any resources to the network. Various mechanisms have been designed to overcome this problem. However, the selfish behavior of peers has aspects which go beyond resource sharing. This paper studies t ..."
Abstract

Cited by 44 (5 self)
 Add to MetaCart
Current peertopeer (P2P) systems often suffer from a large fraction of freeriders not contributing any resources to the network. Various mechanisms have been designed to overcome this problem. However, the selfish behavior of peers has aspects which go beyond resource sharing. This paper studies the effects on the topology of a P2P network if peers selfishly select the peers to connect to. In our model, a peer exploits locality properties in order to minimize the latency (or response times) of its lookup operations. At the same time, the peer aims at not having to maintain links to too many other peers in the system. We show that the resulting topologies can be much worse than if peers collaborated. Moreover, the network may never stabilize, even in the absence of churn. 1
The complexity of game dynamics: Bgp oscillations, sink equilibria, and beyond
 In SODA ’08: Proceedings of the nineteenth annual ACMSIAM symposium on Discrete algorithms
, 2008
"... We settle the complexity of a wellknown problem in networking by establishing that it is PSPACEcomplete to tell whether a system of path preferences in the BGP protocol [25] can lead to oscillatory behavior; one key insight is that the BGP oscillation question is in fact one about Nash dynamics. W ..."
Abstract

Cited by 21 (4 self)
 Add to MetaCart
We settle the complexity of a wellknown problem in networking by establishing that it is PSPACEcomplete to tell whether a system of path preferences in the BGP protocol [25] can lead to oscillatory behavior; one key insight is that the BGP oscillation question is in fact one about Nash dynamics. We show that the concept of sink equilibria proposed recently in [11] is also PSPACEcomplete to analyze and approximate for graphical games. Finally, we propose a new equilibrium concept inspired by game dynamics, unit recall equilibria, which we show to be close to universal (exists with high probability in a random game) and algorithmically promising. We also give a relaxation thereof, called componentwise unit recall equilibria, which we show to be both tractable and universal (guaranteed to exist in every game).
The communication complexity of uncoupled Nash equilibrium procedures
 Games and Economic Behavior
, 2006
"... We study the question of how long it takes players to reach a Nash equilibrium in uncoupled setups, where each player initially knows only his own payoff function. We derive lower bounds on the communication complexity of reaching a Nash equilibrium, i.e., on the number of bits that need to be trans ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
We study the question of how long it takes players to reach a Nash equilibrium in uncoupled setups, where each player initially knows only his own payoff function. We derive lower bounds on the communication complexity of reaching a Nash equilibrium, i.e., on the number of bits that need to be transmitted, and thus also on the required number of steps. Specifically, we show lower bounds that are exponential in the number of players in each one of the following cases: (1) reaching a pure Nash equilibrium; (2) reaching a pure Nash equilibrium in a Bayesian setting; and (3) reaching a mixed Nash equilibrium. We then show that, in contrast, the communication complexity of reaching a correlated equilibrium is polynomial in the number of players.