Results 1 
7 of
7
lambdacalculi with explicit substitutions and composition which preserve beta strong normalization (Extended Abstract)
, 1996
"... ) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cede ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
) Maria C. F. Ferreira 1 and Delia Kesner 2 and Laurence Puel 2 1 Dep. de Inform'atica, Fac. de Ciencias e Tecnologia, Univ. Nova de Lisboa, Quinta da Torre, 2825 Monte de Caparica, Portugal, cf@fct.unl.pt. 2 CNRS & Lab. de Rech. en Informatique, Bat 490, Univ. de ParisSud, 91405 Orsay Cedex, France, fkesner,puelg@lri.fr. Abstract. We study preservation of fistrong normalization by d and dn , two confluent calculi with explicit substitutions defined in [10]; the particularity of these calculi is that both have a composition operator for substitutions. We develop an abstract simulation technique allowing to reduce preservation of fistrong normalization of one calculus to that of another one, and apply said technique to reduce preservation of fistrong normalization of d and dn to that of f , another calculus having no composition operator. Then, preservation of fistrong normalization of f is shown using the same technique as in [2]. As a consequence, d and dn become the fir...
Systematic search for lambda expressions
 In Proceedings Sixth Symposium on Trends in Functional Programming (TFP2005
, 2005
"... This paper presents a system for searching for desired small functional programs by just generating a sequence of typecorrect programs in a systematic and exhaustive manner and evaluating them. The main goal of this line of research is to ease functional programming, along with the subgoal to provi ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
This paper presents a system for searching for desired small functional programs by just generating a sequence of typecorrect programs in a systematic and exhaustive manner and evaluating them. The main goal of this line of research is to ease functional programming, along with the subgoal to provide an axis to evaluate heuristic approaches to program synthesis such as genetic programming by telling the best performance possible by exhaustive search algorithms. While our previous approach to that goal used combinatory expressions in order to simplify the synthesis process, which led to redundant combinator expressions with complex types, this time we use de Bruijn lambda expressions and enjoy improved results. 1
Explicit Substitutions and Reducibility
 Journal of Logic and Computation
, 2001
"... . We consider reducibility sets dened not by induction on types but by induction on sequents as a tool to prove strong normalization of systems with explicit substitution. To illustrate this point, we give a proof of strong normalization (SN) for simplytyped callbyname ~calculus enriched with op ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
. We consider reducibility sets dened not by induction on types but by induction on sequents as a tool to prove strong normalization of systems with explicit substitution. To illustrate this point, we give a proof of strong normalization (SN) for simplytyped callbyname ~calculus enriched with operators of explicit unary substitutions. The ~calculus, dened by Curien & Herbelin, is a variant of calculus with a let operator that exhibits symmetries such as terms/contexts and callbyname /callbyvalue reduction. The ~calculus embeds various standard calculi (and Gentzen's style sequent calculi too) and as an application we derive the strong normalization of Parigot's simplytyped calculus with explicit substitution. Introduction Explicit substitution in calculus The traditional theory of calculus relies on reduction, that is the capture by a function of its argument followed by the process of substituting this argument to the places where it is used. The ...
The theory of calculi with explicit substitutions revisited
 CSL 2007
, 2007
"... Calculi with explicit substitutions (ES) are widely used in different areas of computer science. Complex systems with ES were developed these last 15 years to capture the good computational behaviour of the original systems (with metalevel substitutions) they were implementing. In this paper we fi ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Calculi with explicit substitutions (ES) are widely used in different areas of computer science. Complex systems with ES were developed these last 15 years to capture the good computational behaviour of the original systems (with metalevel substitutions) they were implementing. In this paper we first survey previous work in the domain by pointing out the motivations and challenges that guided the development of such calculi. Then we use very simple technology to establish a general theory of explicit substitutions for the lambdacalculus which enjoys fundamental properties such as simulation of onestep betareduction, confluence on metaterms, preservation of betastrong normalisation, strong normalisation of typed terms and full composition. The calculus also admits a natural translation into Linear Logic’s proofnets.
A Theory of Explicit Substitutions with Safe and Full Composition
 Logical Methods in Computer Science
"... Vol. 5 (3:1) 2009, pp. 1–29 ..."
Partial categorical multicombinators and church rosser theorems
, 1992
"... Abstract: Categorical MultiCombinators form a rewriting system developed with the aim of providing efficient implementations of lazy functional languages. The core of the system of Categorical MultiCombinators consists of only four rewriting laws with a very low patternmatching complexity. This s ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract: Categorical MultiCombinators form a rewriting system developed with the aim of providing efficient implementations of lazy functional languages. The core of the system of Categorical MultiCombinators consists of only four rewriting laws with a very low patternmatching complexity. This system allows the equivalent of several βreductions to be performed at once, as functions form frames with all their arguments. Although this feature is convenient for most cases of function application it does not allow partially parameterised functions to fetch arguments. This paper presents Partial Categorical MultiCombinators, a new rewriting system, which removes this drawback. Key Words: functional programming, categorical combinators, explicit substitutions. Category: SD.F.4.1, SD D.3.2
A Flexible Framework for Visualisation of Computational Properties of General Explicit Substitutions Calculi
, 2010
"... SUBSEXPL is a system originally developed to visualise reductions, simplifications and normalisations in three important calculi of explicit substitutions and has been applied to understand and explain properties of these calculi and to compare the different styles of making explicit the substitutio ..."
Abstract
 Add to MetaCart
SUBSEXPL is a system originally developed to visualise reductions, simplifications and normalisations in three important calculi of explicit substitutions and has been applied to understand and explain properties of these calculi and to compare the different styles of making explicit the substitution operation in implementations of the λcalculus in de Bruijn notation. The system was developed in OCaml and now it can be executed inside the Emacs editor within a new mode which allows a very easy interaction. The use of special symbols makes its application very useful for students because the notation on the screen is as close as possible to that on the papers. In addition to λcalculus and explicit substitutions calculi in de Bruijn notation, now it is possible to work with the λcalculus with variables as names and with several calculi of explicit substitutions using also representation of variables with names. Moreover, in contrast to the original version of the system, that was restricted to three specific calculi of explicit substitution, the new version allows the inclusion of new calculi by giving as input their grammatical descriptions. SUBSEXPL has been used with success for teaching basic properties of the λcalculus and for illustrating the computational impact of selecting one kind of representation of variables (either names or indices) and a specific style of making explicit substitutions in real implementations based on the λcalculus. Keywords: Term rewriting systems, calculi of explicit substitutions, λcalculi