Results 11  20
of
483
Convolutive Blind Separation of NonStationary
"... Acoustic signals recorded simultaneously in a reverberant environment can be described as sums of differently convolved sources. The task of source separation is to identify the multiple channels and possibly to invert those in order to obtain estimates of the underlying sources. We tackle the probl ..."
Abstract

Cited by 152 (3 self)
 Add to MetaCart
Acoustic signals recorded simultaneously in a reverberant environment can be described as sums of differently convolved sources. The task of source separation is to identify the multiple channels and possibly to invert those in order to obtain estimates of the underlying sources. We tackle the problem by explicitly exploiting the nonstationarity of the acoustic sources. Changing crosscorrelations at multiple times give a sufficient set of constraints for the unknown channels. A least squares optimization allows us to estimate a forward model, identifying thus the multipath channel. In the same manner we can find an FIR backward model, which generates well separated model sources. Furthermore, for more than three channels we have sufficient conditions to estimate underlying additive sensor noise powers. We show good performance in real room environments and demonstrate the algorithm's utility for automatic speech recognition.
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
, 1999
"... Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior ..."
Abstract

Cited by 149 (1 self)
 Add to MetaCart
Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior distributions over the parameters remains a difficult problem. Moreover, learning the structure of models with latent variables, for which the Bayesian approach is crucial, is yet a harder problem. In this paper I present the Variational Bayes framework, which provides a solution to these problems. This approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner without resorting to sampling methods. Unlike in the Laplace approximation, these posteriors are generally nonGaussian and no Hessian needs to be computed. The resulting algorithm generalizes the standard Expectation Maximization a...
Learning Spatially Localized, PartsBased Representation
, 2001
"... In this paper, we propose a novel method, called local nonnegative matrix factorization (LNMF), for learning spatially localized, partsbased subspace representation of visual patterns. An objective function is defined to impose localization constraint, in addition to the nonnegativity constraint i ..."
Abstract

Cited by 136 (3 self)
 Add to MetaCart
(Show Context)
In this paper, we propose a novel method, called local nonnegative matrix factorization (LNMF), for learning spatially localized, partsbased subspace representation of visual patterns. An objective function is defined to impose localization constraint, in addition to the nonnegativity constraint in the standard NMF [1]. This gives a set of bases which not only allows a nonsubtractive (partbased) representation of images but also manifests localized features. An algorithm is presented for the learning of such basis components. Experimental results are presented to compare LNMF with the NMF and PCA methods for face representation and recognition, which demonstrates advantages of LNMF.
Nonlinear source separation: the postnonlinear mixtures
 In: Proceedings of the ESANN’97
, 1997
"... Abstract—In this paper, we address the problem of separation of mutually independent sources in nonlinear mixtures. First, we propose theoretical results and prove that in the general case, it is not possible to separate the sources without nonlinear distortion. Therefore, we focus our work on speci ..."
Abstract

Cited by 131 (25 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we address the problem of separation of mutually independent sources in nonlinear mixtures. First, we propose theoretical results and prove that in the general case, it is not possible to separate the sources without nonlinear distortion. Therefore, we focus our work on specific nonlinear mixtures known as postnonlinear mixtures. These mixtures constituted by a linear instantaneous mixture (linear memoryless channel) followed by an unknown and invertible memoryless nonlinear distortion, are realistic models in many situations and emphasize interesting properties i.e., in such nonlinear mixtures, sources can be estimated with the same indeterminacies as in instantaneous linear mixtures. The separation structure of nonlinear mixtures is a twostage system, namely, a nonlinear stage followed by a linear stage, the parameters of which are updated to minimize an output independence criterion expressed as a mutual information criterion. The minimization of this criterion requires knowledge or estimation of source densities or of their logderivatives. A first algorithm based on a Gram–Charlier expansion of densities is proposed. Unfortunately, it fails for hard nonlinear mixtures. A second algorithm based on an adaptive estimation of the logderivative of densities leads to very good performance, even with hard nonlinearities. Experiments are proposed to illustrate these results. Index Terms—Entropy, neural networks, nonlinear mixtures, source separation, unsupervised adaptive algorithms. I.
Functional Analysis and
, 1957
"... the effect of cosmetic essence by independent component ..."
Abstract

Cited by 117 (0 self)
 Add to MetaCart
the effect of cosmetic essence by independent component
Blind Separation of Mixture of Independent Sources Through a Maximum Likelihood Approach
 In Proc. EUSIPCO
, 1997
"... In this paper we propose two methods for separating mixtures of independent sources without any precise knowledge of their probability distribution. They are obtained by considering a maximum likelihood solution corresponding to some given distributions of the sources and relaxing this assumption af ..."
Abstract

Cited by 101 (8 self)
 Add to MetaCart
In this paper we propose two methods for separating mixtures of independent sources without any precise knowledge of their probability distribution. They are obtained by considering a maximum likelihood solution corresponding to some given distributions of the sources and relaxing this assumption afterward. The first method is specially adapted to temporally independent non Gaussian sources and is based on the use of nonlinear separating functions. The second method is specially adapted to correlated sources with distinct spectra and is based on the use of linear separating filters. A theoretical analysis of the performance of the methods has been made. A simple procedure for choosing optimally the separating functions from a given linear space of functions is proposed. Further, in the second method, a simple implementation based on the simultaneous diagonalization of two symmetric matrices is provided. Finally, some numerical and simulation results are given illustrating the performan...
Blind Separation Of Convolved Sources Based On Information Maximization
 IN IEEE WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING
, 1996
"... Blind separation of independent sources from their convolutive mixtures is a problem in many real world multisensor applications. In this paper we present a solution to this problem based on the information maximization principle, which was recently proposed by Bell and Sejnowski for the case of bl ..."
Abstract

Cited by 98 (1 self)
 Add to MetaCart
Blind separation of independent sources from their convolutive mixtures is a problem in many real world multisensor applications. In this paper we present a solution to this problem based on the information maximization principle, which was recently proposed by Bell and Sejnowski for the case of blind separation of instantaneous mixtures. We present a feedback network architecture capable of coping with convolutive mixtures, and we derive the adaptation equations for the adaptive filters in the network by maximizing the information transferred through the network. Examples using speech signals are presented to illustrate the algorithm.
Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation
, 1999
"... Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. ..."
Abstract

Cited by 98 (14 self)
 Add to MetaCart
Sparse coding is a method for finding a representation of data in which each of the components of the representation is only rarely significantly active. Such a representation is closely related to redundancy reduction and independent component analysis, and has some neurophysiological plausibility. In this paper, we show how sparse coding can be used for denoising. Using maximum likelihood estimation of nongaussian variables corrupted by gaussian noise, we show how to apply a softthresholding (shrinkage) operator on the components of sparse coding so as to reduce noise. Our method is closely related to the method of wavelet shrinkage, but it has the important benefit over wavelet methods that the representation is determined solely by the statistical properties of the data. The wavelet representation, on the other hand, relies heavily on certain mathematical properties (like selfsimilarity) that may be only weakly related to the properties of natural data.
A Fast FixedPoint Algorithm for Independent Component Analysis of Complex Valued Signals
, 2000
"... Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article it is assumed that the original, complex valued source signals are mutually statis ..."
Abstract

Cited by 94 (1 self)
 Add to MetaCart
Separation of complex valued signals is a frequently arising problem in signal processing. For example, separation of convolutively mixed source signals involves computations on complex valued signals. In this article it is assumed that the original, complex valued source signals are mutually statistically independent, and the problem is solved by the independent component analysis (ICA) model. ICA is a statistical method for transforming an observed multidimensional random vector into components that are mutually as independent as possible. In this article, a fast xedpoint type algorithm that is capable of separating complex valued, linearly mixed source signals is presented and its computational efficiency is shown by simulations. Also, the local consistency of the estimator given by the algorithm is proved.
Probabilistic Independent Component Analysis
, 2003
"... Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ..."
Abstract

Cited by 91 (12 self)
 Add to MetaCart
(Show Context)
Independent Component Analysis is becoming a popular exploratory method for analysing complex data such as that from FMRI experiments. The application of such 'modelfree' methods, however, has been somewhat restricted both by the view that results can be uninterpretable and by the lack of ability to quantify statistical significance. We present an integrated approach to Probabilistic ICA for FMRI data that allows for nonsquare mixing in the presence of Gaussian noise. We employ an objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e. the number of activation and nonGaussian noise sources. Reduction of the data to this 'true' subspace before the ICA decomposition automatically results in an estimate of the noise, leading to the ability to assign significance to voxels in ICA spatial maps. Estimation of the number of intrinsic sources not only enables us to carry out probabilistic modelling, but also achieves an asymptotically unique decomposition of the data. This reduces problems of interpretation, as each final independent component is now much more likely to be due to only one physical or physiological process. We also describe other improvements to standard ICA, such as temporal prewhitening and variance normafisation of timeseries, the latter being particularly useful in the context of dimensionality reduction when weak activation is present. We discuss the use of prior information about the spatiotemporal nature of the source processes, and an alternativehypothesis testing approach for inference, using Gaussian mixture models. The performance of our approach is illustrated and evaluated on real and complex artificial FMRI data, and compared to the spatiotemporal accuracy of restfits obtaine...