Results 1 
4 of
4
Abstract Computerizing Mathematical Text with
"... Mathematical texts can be computerized in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which c ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Mathematical texts can be computerized in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which capture the full mathematical meaning and have proofs expressed in a formal foundation of mathematics. In between, there are computer typesetting systems (e.g., LATEX and Presentation MathML) and semantically oriented systems (e.g., Content MathML, OpenMath, OMDoc, etc.). The MathLang project was initiated in 2000 by Fairouz Kamareddine and Joe Wells with the aim of developing an approach for computerizing mathematical texts and knowledge which is flexible enough to connect the different approaches to computerization, which allows various degrees of formalization, and which is compatible with different logical frameworks (e.g., set theory, category theory, type theory, etc.) and proof systems. The approach is embodied in a computer representation, which we call MathLang, and associated software tools, which are being developed by ongoing work. Three Ph.D. students (Manuel Maarek (2002/2007), Krzysztof Retel (since 2004), and Robert Lamar (since 2006)) and over a dozen master’s degree and undergraduate students have worked on MathLang. The project’s progress and design choices are driven by the needs for computerizing real representative mathematical texts chosen from various
CGa Checker & CGaTSa InterfaceMathLang framework
, 2007
"... Offering to the working mathematician a framework for mathematics on computer. Mathematicians oriented Faithful to the Common Mathematical Language (CML) for embracing traditional authoring. Assisted authoring Knowledge decomposition by means of language aspects to ease automation and the assistance ..."
Abstract
 Add to MetaCart
Offering to the working mathematician a framework for mathematics on computer. Mathematicians oriented Faithful to the Common Mathematical Language (CML) for embracing traditional authoring. Assisted authoring Knowledge decomposition by means of language aspects to ease automation and the assistance by experts in formalisation.
Computerising Mathematical Text with MathLang
"... Mathematical texts can be computerised in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which c ..."
Abstract
 Add to MetaCart
Mathematical texts can be computerised in many ways that capture differing amounts of the mathematical meaning. At one end, there is document imaging, which captures the arrangement of black marks on paper, while at the other end there are proof assistants (e.g., Mizar, Isabelle, Coq, etc.), which capture the full mathematical meaning and have proofs expressed in a formal foundation of mathematics. In between, there are computer typesetting systems (e.g., LATEX and Presentation MathML) and semantically oriented systems (e.g., Content MathML, OpenMath, OMDoc, etc.). The MathLang project was initiated in 2000 by Fairouz Kamareddine and Joe Wells with the aim of developing an approach for computerising mathematical texts which is flexible enough to connect the different approaches to computerisation, which allows various degrees of formalisation, and which is compatible with different logical frameworks (e.g., set theory, category theory, type theory, etc.) and proof systems. The approach is embodied in a computer representation, which we call MathLang, and associated software tools, which are being developed by ongoing work. Four Ph.D. students (Manuel Maarek (2002/2007), Krzysztof Retel (since 2004), Robert Lamar (since 2006)), and Christoph Zengler (since 2008) and over a dozen master’s degree and undergraduate