Results 1  10
of
507
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2029 (128 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for realtime applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 561 (14 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a MixtureofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection, recognition, and coding of human faces and nonrigid objects such as hands.
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propose a metho ..."
Abstract

Cited by 501 (32 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a preliminary theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabelled d...
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 309 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Regularization networks and support vector machines
 Advances in Computational Mathematics
, 2000
"... Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization a ..."
Abstract

Cited by 266 (33 self)
 Add to MetaCart
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization and Support Vector Machines. We review both formulations in the context of Vapnik’s theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics. The emphasis is on regression: classification is treated as a special case.
Gaussian Processes for Regression
 Advances in Neural Information Processing Systems 8
, 1996
"... The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparame ..."
Abstract

Cited by 219 (18 self)
 Add to MetaCart
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.
In defense of onevsall classification
 Journal of Machine Learning Research
, 2004
"... Editor: John ShaweTaylor We consider the problem of multiclass classification. Our main thesis is that a simple “onevsall ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are welltuned regularized classifiers such as support vector machines. This the ..."
Abstract

Cited by 202 (0 self)
 Add to MetaCart
Editor: John ShaweTaylor We consider the problem of multiclass classification. Our main thesis is that a simple “onevsall ” scheme is as accurate as any other approach, assuming that the underlying binary classifiers are welltuned regularized classifiers such as support vector machines. This thesis is interesting in that it disagrees with a large body of recent published work on multiclass classification. We support our position by means of a critical review of the existing literature, a substantial collection of carefully controlled experimental work, and theoretical arguments.
Prediction With Gaussian Processes: From Linear Regression To Linear Prediction And Beyond
 Learning and Inference in Graphical Models
, 1997
"... The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. Th ..."
Abstract

Cited by 195 (4 self)
 Add to MetaCart
The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems. PREDICTION WITH GAUSSIAN PROCESSES: FROM LINEAR REGRESSION TO LINEAR PREDICTION AND BEYOND 2 1 Introduction In the last decade neural networks have been used to tackle regression and classification problems, with some notable successes. It has also been widely recognized that they form a part of a wide variety of nonlinear statistical techniques that can be used for...
Prior Learning and Gibbs ReactionDiffusion
, 1997
"... This article addresses two important themes in early visual computation: rst it presents a novel theory for learning the universal statistics of natural images { a prior model for typical cluttered scenes of the world { from a set of natural images, second it proposes a general framework of designi ..."
Abstract

Cited by 148 (18 self)
 Add to MetaCart
This article addresses two important themes in early visual computation: rst it presents a novel theory for learning the universal statistics of natural images { a prior model for typical cluttered scenes of the world { from a set of natural images, second it proposes a general framework of designing reactiondiusion equations for image processing. We start by studying the statistics of natural images including the scale invariant properties, then generic prior models were learned to duplicate the observed statistics, based on the minimax entropy theory studied in two previous papers. The resulting Gibbs distributions have potentials of the form U(I; ; S) = P K I)(x; y)) with S = fF g being a set of lters and = f the potential functions. The learned Gibbs distributions con rm and improve the form of existing prior models such as lineprocess, but in contrast to all previous models, inverted potentials (i.e. (x) decreasing as a function of jxj) were found to be necessary. We nd that the partial dierential equations given by gradient descent on U(I; ; S) are essentially reactiondiusion equations, where the usual energy terms produce anisotropic diusion while the inverted energy terms produce reaction associated with pattern formation, enhancing preferred image features. We illustrate how these models can be used for texture pattern rendering, denoising, image enhancement and clutter removal by careful choice of both prior and data models of this type, incorporating the appropriate features. Song Chun Zhu is now with the Computer Science Department, Stanford University, Stanford, CA 94305, and David Mumford is with the Division of Applied Mathematics, Brown University, Providence, RI 02912. This work started when the authors were at ...
Adaptive representation of dynamics during learning of a motor task
 Journal of Neuroscience
, 1994
"... Contents: 46 pages, including 1 appendix, 1 table, and 16 gures. ..."
Abstract

Cited by 147 (19 self)
 Add to MetaCart
Contents: 46 pages, including 1 appendix, 1 table, and 16 gures.