Results 1  10
of
29
Counting Quantifiers, Successor Relations, and Logarithmic Space
 Journal of Computer and System Sciences
"... Given a successor relation S (i.e., a directed line graph), and given two distinguished points s and t, the problem ORD is to determine whether s precedes t in the unique ordering defined by S. We show that ORD is Lcomplete (via quantifierfree projections). We then show that firstorder logic with ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
Given a successor relation S (i.e., a directed line graph), and given two distinguished points s and t, the problem ORD is to determine whether s precedes t in the unique ordering defined by S. We show that ORD is Lcomplete (via quantifierfree projections). We then show that firstorder logic with counting quantifiers, a logic that captures TC 0 ([BIS90]) over structures with a builtin totalordering, can not express ORD. Our original proof of this in the conference version of this paper ([Ete95]) employed an EhrenfeuchtFraiss'e Game for firstorder logic with counting ([IL90]). Here we show how the result follows from a more general one obtained independently by Nurmonen, [Nur96]. We then show that an appropriately modified version of the EF game is "complete" for the logic with counting in the sense that it provides a necessary and sufficient condition for expressibility in the logic. We observe that the Lcomplete problem ORD is essentially sparse if we ignore reorderings of v...
DynFO: A Parallel, Dynamic Complexity Class
 Journal of Computer and System Sciences
, 1994
"... Traditionally, computational complexity has considered only static problems. Classical Complexity Classes such as NC, P, and NP are defined in terms of the complexity of checking  upon presentation of an entire input  whether the input satisfies a certain property. For many applications of compu ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
Traditionally, computational complexity has considered only static problems. Classical Complexity Classes such as NC, P, and NP are defined in terms of the complexity of checking  upon presentation of an entire input  whether the input satisfies a certain property. For many applications of computers it is more appropriate to model the process as a dynamic one. There is a fairly large object being worked on over a period of time. The object is repeatedly modified by users and computations are performed. We develop a theory of Dynamic Complexity. We study the new complexity class, Dynamic FirstOrder Logic (DynFO). This is the set of properties that can be maintained and queried in firstorder logic, i.e. relational calculus, on a relational database. We show that many interesting properties are in DynFO including multiplication, graph connectivity, bipartiteness, and the computation of minimum spanning trees. Note that none of these problems is in static FO, and this f...
Uniform ConstantDepth Threshold Circuits for Division and Iterated Multiplication
, 2002
"... this paper. 2.1. Circuit Classes We begin by formally defining the three circuit complexity classes that will concern us here. These are given by combinatorial restrictions on the circuits of the family. We will then define the uniformity restrictions we will use. Finally, we will give the equival ..."
Abstract

Cited by 38 (8 self)
 Add to MetaCart
this paper. 2.1. Circuit Classes We begin by formally defining the three circuit complexity classes that will concern us here. These are given by combinatorial restrictions on the circuits of the family. We will then define the uniformity restrictions we will use. Finally, we will give the equivalent formulations of uniform circuit complexity classes in terms of descriptive complexity classes
Feasible Computation through Model Theory
, 1993
"... The computational complexity of a problem is usually defined in terms of the resources required on some machine model of computation. An alternative view looks at the complexity of describing the problem (seen as a collection of relational structures) in a logic, measuring logical resources such as ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
The computational complexity of a problem is usually defined in terms of the resources required on some machine model of computation. An alternative view looks at the complexity of describing the problem (seen as a collection of relational structures) in a logic, measuring logical resources such as the number of variables, quantifiers, operators, etc. A close correspondence has been observed between these two, with many natural logics corresponding exactly to independently defined complexity classes. For the complexity classes that are generally identified with feasible computation, such characterizations require the presence of a linear order on the domain of every structure, in which case the class PTIME is characterized by an extension of firstorder logic by means of an inductive operator. No logical characterization of feasible computation is known for unordered structures. We approach this question from two directions. On the one hand, we seek to accurately characterize the expre...
Circuit Complexity before the Dawn of the New Millennium
, 1997
"... The 1980's saw rapid and exciting development of techniques for proving lower bounds in circuit complexity. This pace has slowed recently, and there has even been work indicating that quite different proof techniques must be employed to advance beyond the current frontier of circuit lower bounds. Al ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
The 1980's saw rapid and exciting development of techniques for proving lower bounds in circuit complexity. This pace has slowed recently, and there has even been work indicating that quite different proof techniques must be employed to advance beyond the current frontier of circuit lower bounds. Although this has engendered pessimism in some quarters, there have in fact been many positive developments in the past few years showing that significant progress is possible on many fronts. This paper is a (necessarily incomplete) survey of the state of circuit complexity as we await the dawn of the new millennium.
NonCommutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds
 Theoretical Computer Science
"... We investigate the phenomenon of depthreduction in commutativeand noncommutative arithmetic circuits. We prove that in the commutative setting, uniform semiunbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree (and unrestricted dept ..."
Abstract

Cited by 28 (10 self)
 Add to MetaCart
We investigate the phenomenon of depthreduction in commutativeand noncommutative arithmetic circuits. We prove that in the commutative setting, uniform semiunbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree (and unrestricted depth); earlier proofs did not work in the uniform setting. This also provides a unified proof of the circuit characterizations of the class LOGCFL and its counting variant #LOGCFL. We show that AC 1 has no more power than arithmetic circuits of polynomial size and degree n O(log log n) (improving the trivial bound of n O(logn) ). Connections are drawn between TC 1 and arithmetic circuits of polynomial size and degree. Then we consider noncommutative computation. We show that over the algebra (\Sigma ; max, concat), arithmetic circuits of polynomial size and polynomial degree can be reduced to O(log 2 n) depth (and even to O(log n) depth if unboundedfanin gates are allowed) . This...
Determinant: Combinatorics, Algorithms, and Complexity
, 1997
"... We prove a new combinatorial characterization of the determinant. The characterization yields a simple combinatorial algorithm for computing the determinant. Hitherto, all (known) algorithms for the determinant have been based on linear algebra. Our combinatorial algorithm requires no division, a ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
We prove a new combinatorial characterization of the determinant. The characterization yields a simple combinatorial algorithm for computing the determinant. Hitherto, all (known) algorithms for the determinant have been based on linear algebra. Our combinatorial algorithm requires no division, and works over arbitrary commutative rings. It also lends itself to e#cient parallel implementations. It has been known for some time now that the complexity class GapL characterizes the complexity of computing the determinant of matrices over the integers. We present a direct proof of this characterization.
The Expressiveness of a Family of Finite Set Languages
 IN PROCEEDINGS OF 10TH ACM SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS
, 1991
"... In this paper we characterise exactly the complexity of a set based database language called SRL, which presents a unified framework for queries and updates. By imposing simple syntactic restrictions on it, we are able to express exactly the classes, P and LOGSPACE. We also discuss the role of orde ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
In this paper we characterise exactly the complexity of a set based database language called SRL, which presents a unified framework for queries and updates. By imposing simple syntactic restrictions on it, we are able to express exactly the classes, P and LOGSPACE. We also discuss the role of ordering in database query languages and show that the hom operator of Machiavelli language in [OBB89] does not capture all the orderindependent properties.
A FirstOrder Isomorphism Theorem
 SIAM JOURNAL ON COMPUTING
, 1993
"... We show that for most complexity classes of interest, all sets complete under firstorder projections are isomorphic under firstorder isomorphisms. That is, a very restricted version of the BermanHartmanis Conjecture holds. ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We show that for most complexity classes of interest, all sets complete under firstorder projections are isomorphic under firstorder isomorphisms. That is, a very restricted version of the BermanHartmanis Conjecture holds.
Searching Constant Width Mazes Captures the AC° Hierarchy
 In Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science
, 1997
"... We show that searching a width /' maze is complete for II, i.e., for the /"th level of the AC hierarchy. Equivalently, stconnectivity for width /' grid graphs is complete for II. As an application, we show that there is a data structure solving dynamic stconnectivity for constant width grid gr ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
We show that searching a width /' maze is complete for II, i.e., for the /"th level of the AC hierarchy. Equivalently, stconnectivity for width /' grid graphs is complete for II. As an application, we show that there is a data structure solving dynamic stconnectivity for constant width grid graphs with time bound O (log log n) per operation on a random access machine. The dynamic algorithm is derived from the parallel one in an indirect way using algebraic tools.