Results 1  10
of
31
Reflections on multivariate algorithmics and problem parameterization
 PROC. 27TH STACS
, 2010
"... Research on parameterized algorithmics for NPhard problems has steadily grown over the last years. We survey and discuss how parameterized complexity analysis naturally develops into the field of multivariate algorithmics. Correspondingly, we describe how to perform a systematic investigation and e ..."
Abstract

Cited by 24 (19 self)
 Add to MetaCart
Research on parameterized algorithmics for NPhard problems has steadily grown over the last years. We survey and discuss how parameterized complexity analysis naturally develops into the field of multivariate algorithmics. Correspondingly, we describe how to perform a systematic investigation and exploitation of the “parameter space” of computationally hard problems.
Parameterized graph separation problems
 In Proc. 1st IWPEC, volume 3162 of LNCS
, 2004
"... We consider parameterized problems where some separation property has to be achieved by deleting as few vertices as possible. The following five problems are studied: delete k vertices such that (a) each of the given ℓ terminals is separated from the others, (b) each of the given ℓ pairs of terminal ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
We consider parameterized problems where some separation property has to be achieved by deleting as few vertices as possible. The following five problems are studied: delete k vertices such that (a) each of the given ℓ terminals is separated from the others, (b) each of the given ℓ pairs of terminals is separated, (c) exactly ℓ vertices are cut away from the graph, (d) exactly ℓ connected vertices are cut away from the graph, (e) the graph is separated into at least ℓ components. We show that if both k and ℓ are
Strong computational lower bounds via parameterized complexity
, 2006
"... We develop new techniques for deriving strong computational lower bounds for a class of wellknown NPhard problems. This class includes weighted satisfiability, dominating set, hitting set, set cover, clique, and independent set. For example, although a trivial enumeration can easily test in time O ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
We develop new techniques for deriving strong computational lower bounds for a class of wellknown NPhard problems. This class includes weighted satisfiability, dominating set, hitting set, set cover, clique, and independent set. For example, although a trivial enumeration can easily test in time O(n k) if a given graph of n vertices has a clique of size k, we prove that unless an unlikely collapse occurs in parameterized complexity theory, the problem is not solvable in time f(k)n o(k) for any function f, even if we restrict the parameter values to be bounded by an arbitrarily small function of n. Under the same assumption, we prove that even if we restrict the parameter values k to be of the order Θ(µ(n)) for any reasonable function µ, no algorithm of running time n o(k) can test if a graph of n vertices has a clique of size k. Similar strong lower bounds on the computational complexity are also derived for other NPhard problems in the above class. Our techniques can be further extended to derive computational lower bounds on polynomial time approximation schemes for NPhard optimization problems. For example, we prove that the NPhard distinguishing substring selection problem, for which a polynomial time approximation scheme has been recently developed, has no polynomial time approximation schemes of running time f(1/ɛ)n o(1/ɛ) for any function f unless an unlikely collapse occurs in parameterized complexity theory.
Public Key Cryptography from Different Assumptions
, 2008
"... We construct a new public key encryption based on two assumptions: 1. One can obtain a pseudorandom generator with small locality by connecting the outputs to the inputs using any sufficiently good unbalanced expander. 2. It is hard to distinguish between a random graph that is such an expander and ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
We construct a new public key encryption based on two assumptions: 1. One can obtain a pseudorandom generator with small locality by connecting the outputs to the inputs using any sufficiently good unbalanced expander. 2. It is hard to distinguish between a random graph that is such an expander and a random graph where a (planted) random logarithmicsized subset S of the outputs is connected to fewer than S  inputs. The validity and strength of the assumptions raise interesting new algorithmic and pseudorandomness questions, and we explore their relation to the current stateofart. 1
Searching the kchange neighborhood for TSP is W[1]hard
 Oper. Res. Lett
"... We show that searching the kchange neighborhood is W[1]hard for metric TSP, which means that finding the best tour in the kchange neighborhood essentially requires complete search (modulo some complexitytheoretic assumptions). Keywords: Traveling Salesperson Problem, W[1]hardness, parameterized ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We show that searching the kchange neighborhood is W[1]hard for metric TSP, which means that finding the best tour in the kchange neighborhood essentially requires complete search (modulo some complexitytheoretic assumptions). Keywords: Traveling Salesperson Problem, W[1]hardness, parameterized complexity, local search
On parameterized approximability
 Proc. of IWPEC, Lecture Notes in Computer Science 4169
, 2006
"... Abstract. Combining classical approximability questions with parameterized complexity, we introduce a theory of parameterized approximability. The main intention of this theory is to deal with the efficient approximation of small cost solutions for optimisation problems. Key words. Fixedparameter t ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Abstract. Combining classical approximability questions with parameterized complexity, we introduce a theory of parameterized approximability. The main intention of this theory is to deal with the efficient approximation of small cost solutions for optimisation problems. Key words. Fixedparameter tractability, approximation algorithms, hardness of approximation. 1
Parameterized coloring problems on chordal graphs
 Theor. Comput. Sci
, 2006
"... In the precoloring extension problem (PrExt) a graph is given with some of the vertices having preassigned colors and it has to be decided whether this coloring can be extended to a proper coloring of the graph with the given number of colors. Two parameterized versions of the problem are studied in ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
In the precoloring extension problem (PrExt) a graph is given with some of the vertices having preassigned colors and it has to be decided whether this coloring can be extended to a proper coloring of the graph with the given number of colors. Two parameterized versions of the problem are studied in the paper: either the number of precolored vertices or the number of colors used in the precoloring is restricted to be at most k. We show that for chordal graphs these problems are polynomialtime solvable for every fixed k, but W[1]hard if k is the parameter. For a graph class F, let F + ke (resp., F +kv) denote those graphs that can be made to be a member of F by deleting at most k edges (resp., vertices). We investigate the connection between PrExt in F (with the two parameters defined above) and the coloring of F + ke, F + kv graphs (with k being the parameter). Answering an open question of Leizhen Cai [5], we show that coloring chordal+ke graphs is fixedparameter tractable. 1
Parameterized Complexity of Geometric Problems
, 2007
"... This paper surveys parameterized complexity results for hard geometric algorithmic problems. It includes fixedparameter tractable problems in graph drawing, geometric graphs, geometric covering and several other areas, together with an overview of the algorithmic techniques used. Fixedparameter in ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This paper surveys parameterized complexity results for hard geometric algorithmic problems. It includes fixedparameter tractable problems in graph drawing, geometric graphs, geometric covering and several other areas, together with an overview of the algorithmic techniques used. Fixedparameter intractability results are surveyed as well. Finally, we give some directions for future research.
The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf Number
"... Abstract. In the framework of parameterized complexity, exploring how one parameter affects the complexity of a different parameterized (or unparameterized problem) is of general interest. A welldeveloped example is the investigation of how the parameter treewidth influences the complexity of (othe ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Abstract. In the framework of parameterized complexity, exploring how one parameter affects the complexity of a different parameterized (or unparameterized problem) is of general interest. A welldeveloped example is the investigation of how the parameter treewidth influences the complexity of (other) graph problems. The reason why such investigations are of general interest is that realworld input distributions for computational problems often inherit structure from the natural computational processes that produce the problem instances (not necessarily in obvious, or wellunderstood ways). The max leaf number ml(G) of a connected graph G is the maximum number of leaves in a spanning tree for G. Exploring questions analogous to the wellstudied case of treewidth, we can ask: how hard is it to solve 3Coloring, Hamilton Path, Minimum Dominating Set, Minimum Bandwidth or many other problems, for graphs of bounded max leaf number? What optimization problems are W [1]hard under this parameterization? We do two things: (1) We describe much improved FPT algorithms for a large number of graph problems, for input graphs G for which ml(G) ≤ k, based on the polynomialtime extremal structure theory canonically associated to this parameter. We consider improved algorithms both from the point of view of kernelization bounds, and in terms of improved fixedparameter tractable (FPT) runtimes O ∗ (f(k)). (2) The way that we obtain these concrete algorithmic results is general and systematic. We describe the approach, and raise programmatic questions. 1
On the parameterized complexity of ddimensional point set pattern matching
 Inf. Process. Lett
"... Ljubljana, October 25, 2006On the parameterized complexity of ddimensional point set pattern matching ∗ ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Ljubljana, October 25, 2006On the parameterized complexity of ddimensional point set pattern matching ∗