Results 1  10
of
924
Text Classification from Labeled and Unlabeled Documents using EM
 MACHINE LEARNING
, 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract

Cited by 1033 (19 self)
 Add to MetaCart
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of ExpectationMaximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve ...
Adapting to unknown smoothness via wavelet shrinkage
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract

Cited by 991 (20 self)
 Add to MetaCart
We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N log(N) as a function of the sample size N. SureShrink is smoothnessadaptive: if the unknown function contains jumps, the reconstruction (essentially) does also; if the unknown function has a smooth piece, the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothnessadaptive: it is nearminimax simultaneously over a whole interval of the Besov scale; the size of this interval depends on the choice of mother wavelet. We know from a previous paper by the authors that traditional smoothing methods  kernels, splines, and orthogonal series estimates  even with optimal choices of the smoothing parameter, would be unable to perform
The adaptive LASSO and its oracle properties
 Journal of the American Statistical Association
"... The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain sc ..."
Abstract

Cited by 662 (10 self)
 Add to MetaCart
(Show Context)
The lasso is a popular technique for simultaneous estimation and variable selection. Lasso variable selection has been shown to be consistent under certain conditions. In this work we derive a necessary condition for the lasso variable selection to be consistent. Consequently, there exist certain scenarios where the lasso is inconsistent for variable selection. We then propose a new version of the lasso, called the adaptive lasso, where adaptive weights are used for penalizing different coefficients in the!1 penalty. We show that the adaptive lasso enjoys the oracle properties; namely, it performs as well as if the true underlying model were given in advance. Similar to the lasso, the adaptive lasso is shown to be nearminimax optimal. Furthermore, the adaptive lasso can be solved by the same efficient algorithm for solving the lasso. We also discuss the extension of the adaptive lasso in generalized linear models and show that the oracle properties still hold under mild regularity conditions. As a byproduct of our theory, the nonnegative garotte is shown to be consistent for variable selection.
Strictly Proper Scoring Rules, Prediction, and Estimation
, 2007
"... Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if he ..."
Abstract

Cited by 357 (27 self)
 Add to MetaCart
Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if he or she issues the probabilistic forecast F, rather than G ̸ = F. It is strictly proper if the maximum is unique. In prediction problems, proper scoring rules encourage the forecaster to make careful assessments and to be honest. In estimation problems, strictly proper scoring rules provide attractive loss and utility functions that can be tailored to the problem at hand. This article reviews and develops the theory of proper scoring rules on general probability spaces, and proposes and discusses examples thereof. Proper scoring rules derive from convex functions and relate to information measures, entropy functions, and Bregman divergences. In the case of categorical variables, we prove a rigorous version of the Savage representation. Examples of scoring rules for probabilistic forecasts in the form of predictive densities include the logarithmic, spherical, pseudospherical, and quadratic scores. The continuous ranked probability score applies to probabilistic forecasts that take the form of predictive cumulative distribution functions. It generalizes the absolute error and forms a special case of a new and very general type of score, the energy score. Like many other scoring rules, the energy score admits a kernel representation in terms of negative definite functions, with links to inequalities of Hoeffding type, in both univariate and multivariate settings. Proper scoring rules for quantile and interval forecasts are also discussed. We relate proper scoring rules to Bayes factors and to crossvalidation, and propose a novel form of crossvalidation known as randomfold crossvalidation. A case study on probabilistic weather forecasts in the North American Pacific Northwest illustrates the importance of propriety. We note optimum score approaches to point and quantile
Informationtheoretic metric learning
 in NIPS 2006 Workshop on Learning to Compare Examples
, 2007
"... We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a lowrank kernel learning problem. Spe ..."
Abstract

Cited by 342 (15 self)
 Add to MetaCart
(Show Context)
We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a lowrank kernel learning problem. Specifically, we minimize the Burg divergence of a lowrank kernel to an input kernel, subject to pairwise distance constraints. Our approach has several advantages over existing methods. First, we present a natural informationtheoretic formulation for the problem. Second, the algorithm utilizes the methods developed by Kulis et al. [6], which do not involve any eigenvector computation; in particular, the running time of our method is faster than most existing techniques. Third, the formulation offers insights into connections between metric learning and kernel learning. 1
MulticastBased Inference of NetworkInternal Characteristics: Accuracy of Packet Loss Estimation
 IEEE Transactions on Information Theory
, 1998
"... We explore the use of endtoend multicast traffic as measurement probes to infer networkinternal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique explo ..."
Abstract

Cited by 326 (40 self)
 Add to MetaCart
(Show Context)
We explore the use of endtoend multicast traffic as measurement probes to infer networkinternal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique exploits the inherent correlation between such observations to infer the performance of paths between branch points in the multicast tree spanning the probe source and its receivers. We evaluate through analysis and simulation the accuracy of our estimator under a variety of network conditions. In particular, we report on the error between inferred loss rates and actual loss rates as we vary the network topology, propagation delay, packet drop policy, background traffic mix, and probe traffic type. In all but one case, estimated losses and probe losses agree to within 2 percent on average. We feel this accuracy is enough to reliably identify congested links in a widearea internetwork. KeywordsInternet performance, endtoend measurements, Maximum Likelihood Estimator, tomography I.
Scalable statistical bug isolation
 In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation
, 2005
"... We present a statistical debugging algorithm that isolates bugs in programs containing multiple undiagnosed bugs. Earlier statistical algorithms that focus solely on identifying predictors that correlate with program failure perform poorly when there are multiple bugs. Our new technique separates th ..."
Abstract

Cited by 293 (14 self)
 Add to MetaCart
(Show Context)
We present a statistical debugging algorithm that isolates bugs in programs containing multiple undiagnosed bugs. Earlier statistical algorithms that focus solely on identifying predictors that correlate with program failure perform poorly when there are multiple bugs. Our new technique separates the effects of different bugs and identifies predictors that are associated with individual bugs. These predictors reveal both the circumstances under which bugs occur as well as the frequencies of failure modes, making it easier to prioritize debugging efforts. Our algorithm is validated using several case studies, including examples in which the algorithm identified previously unknown, significant crashing bugs in widely used systems. Categories and Subject Descriptors D.2.4 [Software Engineering]: Software/Program Verification—statistical methods; D.2.5
Hidden Markov processes
 IEEE Trans. Inform. Theory
, 2002
"... Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finite ..."
Abstract

Cited by 259 (5 self)
 Add to MetaCart
Abstract—An overview of statistical and informationtheoretic aspects of hidden Markov processes (HMPs) is presented. An HMP is a discretetime finitestate homogeneous Markov chain observed through a discretetime memoryless invariant channel. In recent years, the work of Baum and Petrie on finitestate finitealphabet HMPs was expanded to HMPs with finite as well as continuous state spaces and a general alphabet. In particular, statistical properties and ergodic theorems for relative entropy densities of HMPs were developed. Consistency and asymptotic normality of the maximumlikelihood (ML) parameter estimator were proved under some mild conditions. Similar results were established for switching autoregressive processes. These processes generalize HMPs. New algorithms were developed for estimating the state, parameter, and order of an HMP, for universal coding and classification of HMPs, and for universal decoding of hidden Markov channels. These and other related topics are reviewed in this paper. Index Terms—Baum–Petrie algorithm, entropy ergodic theorems, finitestate channels, hidden Markov models, identifiability, Kalman filter, maximumlikelihood (ML) estimation, order estimation, recursive parameter estimation, switching autoregressive processes, Ziv inequality. I.
Markov Chain Monte Carlo Estimation of Exponential Random Graph Models
 Journal of Social Structure
, 2002
"... This paper is about estimating the parameters of the exponential random graph model, also known as the p # model, using frequentist Markov chain Monte Carlo (MCMC) methods. The exponential random graph model is simulated using Gibbs or MetropolisHastings sampling. The estimation procedures consider ..."
Abstract

Cited by 180 (18 self)
 Add to MetaCart
(Show Context)
This paper is about estimating the parameters of the exponential random graph model, also known as the p # model, using frequentist Markov chain Monte Carlo (MCMC) methods. The exponential random graph model is simulated using Gibbs or MetropolisHastings sampling. The estimation procedures considered are based on the RobbinsMonro algorithm for approximating a solution to the likelihood equation.