Results 1  10
of
146
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 298 (31 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
The Linear TimeBranching Time Spectrum II  The semantics of sequential systems with silent moves
, 1993
"... ion Rule (KFAR) (Baeten, Bergstra & Klop [3]), expresses a global fairness assumption. It says that when possible a system will escape from any cycle of internal actions. Some form of KFAR is crucial for many protocal verifications with unreliable channels, and for that reason preorders and equivale ..."
Abstract

Cited by 290 (17 self)
 Add to MetaCart
ion Rule (KFAR) (Baeten, Bergstra & Klop [3]), expresses a global fairness assumption. It says that when possible a system will escape from any cycle of internal actions. Some form of KFAR is crucial for many protocal verifications with unreliable channels, and for that reason preorders and equivalences that satisfy KFAR are of special interest. Must preorders and divergence sensitive ones cannot satisfy KFAR. In Bergstra, Klop & Olderog [7] it is shown that the combination of KFAR with failure semantics is inconsistent, but they formulate a weaker version of KFAR that is satisfied in failure maysemantics. Still the combination of KFAR \Gamma and the liveness requirement appears to require global testing, and is only satisfied in the semantics between contrasimulation (C) and stability respecting branching bisimulation (BB s ). These requirements would reduce the number of suitable preorders to 18. It is in general a good strategy to do your verifications using the finest preorde...
Barbed Bisimulation
, 1992
"... Machine [8]. In this technique, axioms for a structural congruence relation are introduced prior to the reduction system, in order to to break a rigid, geometrical vision of concurrency; then reduction rules can easily be presented in which redexes are indeed subterms again. It can then be shown 1 ..."
Abstract

Cited by 224 (18 self)
 Add to MetaCart
Machine [8]. In this technique, axioms for a structural congruence relation are introduced prior to the reduction system, in order to to break a rigid, geometrical vision of concurrency; then reduction rules can easily be presented in which redexes are indeed subterms again. It can then be shown 1 that modulo structural congruence the reduction relation exactly represents the silent action of the transition semantics. It is left as an open problem in [11] how to recover from such a formulation the familiar congruences which are based upon a labelled transition system. It turns out that this is not a trivial problem. We tackle it in this paper for the simple case of CCS and strong observational equivalence (). Because the reduction relation coincides with the silent action \Gamma! of the labelled transition system (as mentioned above), we can remain within the latter framework. But we wish to retain the spirit of the reduction semantics as far as possible, in the sense that we wish t...
Towards a Mathematical Operational Semantics
 In Proc. 12 th LICS Conf
, 1997
"... We present a categorical theory of `wellbehaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation ..."
Abstract

Cited by 134 (9 self)
 Add to MetaCart
We present a categorical theory of `wellbehaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets both an operational model and a canonical, internally fully abstract denotational model for free; moreover, both models satisfy the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of wellbehaved rules for structural operational semantics, such as GSOS.
Deriving Bisimulation Congruences for Reactive Systems
 In Proc. of CONCUR 2000, 2000. LNCS 1877
, 2000
"... . The dynamics of reactive systems, e.g. CCS, has often been de ned using a labelled transition system (LTS). More recently it has become natural in de ning dynamics to use reaction rules  i.e. unlabelled transition rules  together with a structural congruence. But LTSs lead more naturally to beha ..."
Abstract

Cited by 116 (14 self)
 Add to MetaCart
. The dynamics of reactive systems, e.g. CCS, has often been de ned using a labelled transition system (LTS). More recently it has become natural in de ning dynamics to use reaction rules  i.e. unlabelled transition rules  together with a structural congruence. But LTSs lead more naturally to behavioural equivalences. So one would like to derive from reaction rules a suitable LTS. This paper shows how to derive an LTS for a wide range of reactive systems. A label for an agent a is de ned to be any context F which intuitively is just large enough so that the agent Fa (\a in context F ") is able to perform a reaction. The key contribution of this paper is a precise de nition of \just large enough", in terms of the categorical notion of relative pushout (RPO), which ensures that bisimilarity is a congruence when sucient RPOs exist. Two examples  a simpli ed form of action calculi and termrewriting  are given, for which it is shown that su cient RPOs indeed exist. The thrust of thi...
A Congruence Theorem for Structured Operational Semantics With Predicates
, 1993
"... . We proposed a syntactical format, the path format, for structured operational semantics in which predicates may occur. We proved that strong bisimulation is a congruence for all the operators that can be defined within the path format. To show that this format is useful we provided many examples t ..."
Abstract

Cited by 109 (5 self)
 Add to MetaCart
. We proposed a syntactical format, the path format, for structured operational semantics in which predicates may occur. We proved that strong bisimulation is a congruence for all the operators that can be defined within the path format. To show that this format is useful we provided many examples that we took from the literature about CCS, CSP, and ACP; they do satisfy the path format but no formats proposed by others. The examples include concepts like termination, convergence, divergence, weak bisimulation, a zero object, side conditions, functions, real time, discrete time, sequencing, negative premises, negative conclusions, and priorities (or a combination of these notions). Key Words & Phrases: structured operational semantics, term deduction system, transition system specification, structured state system, labelled transition system, strong bisimulation, congruence theorem, predicate. 1980 Mathematics Subject Classification (1985 Revision): 68Q05, 68Q55. CR Categories: D.3.1...
Proving congruence of bisimulation in functional programming languages
 Information and Computation
, 1996
"... Email: howe research.att.com We give a method for proving congruence of bisimulationlike equivalences in functional programming languages. The method applies to languages that can be presented as a set of expressions together with an evaluation relation. We use this method to show that some genera ..."
Abstract

Cited by 109 (1 self)
 Add to MetaCart
Email: howe research.att.com We give a method for proving congruence of bisimulationlike equivalences in functional programming languages. The method applies to languages that can be presented as a set of expressions together with an evaluation relation. We use this method to show that some generalizations of Abramsky's applicative bisimulation are congruences whenever evaluation can be specified by a certain natural form of structured operational semantics. One of the generalizations handles nondeterminism and diverging computations.] 1996 Academic Press, Inc. 1.
Priorities in process algebra
, 1999
"... This chapter surveys the semantic rami cations of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. The need for these enriched formalisms arises when one wishes to model system features such asinterrupts, prioritized ..."
Abstract

Cited by 103 (12 self)
 Add to MetaCart
This chapter surveys the semantic rami cations of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. The need for these enriched formalisms arises when one wishes to model system features such asinterrupts, prioritized choice, orrealtime behavior. Approaches to priority in process algebras can be classi ed according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global preemption and static priorities and led to formalisms for modeling interrupts and aspects of realtime, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of preemption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the e cient encoding of realtime semantics. Technically, this chapter studies the di erent models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local preemption. In each case the operational semantics of CCS is modi ed appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for di erent processalgebraic settings are discussed.
The Linear TimeBranching Time Spectrum I  The Semantics of Concrete, Sequential Processes
 Handbook of Process Algebra, chapter 1
"... this paper various semantics in the linear time  branching time spectrum are presented in a uniform, modelindependent way. Restricted to the class of finitely branching, concrete, sequential processes, only fifteen of them turn out to be different, and most semantics found in the literature that ..."
Abstract

Cited by 94 (4 self)
 Add to MetaCart
this paper various semantics in the linear time  branching time spectrum are presented in a uniform, modelindependent way. Restricted to the class of finitely branching, concrete, sequential processes, only fifteen of them turn out to be different, and most semantics found in the literature that can be defined uniformly in terms of action relations coincide with one of these fifteen. Several testing scenarios, motivating these semantics, are presented, phrased in terms of `button pushing experiments' on generative and reactive machines. Finally twelve of these semantics are applied to a simple language for finite, concrete, sequential, nondeterministic processes, and for each of them a complete axiomatization is provided.
Turning SOS Rules into Equations
, 1994
"... Many process algebras are defined by structural operational semantics (SOS). Indeed, most such definitions are nicely structured and fit the GSOS format of [15]. We give a procedure for converting any GSOS language definition to a finite complete equational axiom system (possibly with one infinit ..."
Abstract

Cited by 89 (20 self)
 Add to MetaCart
Many process algebras are defined by structural operational semantics (SOS). Indeed, most such definitions are nicely structured and fit the GSOS format of [15]. We give a procedure for converting any GSOS language definition to a finite complete equational axiom system (possibly with one infinitary induction principle) which precisely characterizes strong bisimulation of processes.