Results 1  10
of
13
Bisimulation by unification
 Proc. AMAST 2002, LNCS 2422
, 2002
"... Abstract. We propose a methodology for the analysis of open systems based on process calculi and bisimilarity. Open systems are seen as coordinators (i.e. terms with placeholders), that evolve when suitable components (i.e. closed terms) fill in their placeholders. The distinguishing feature of ou ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We propose a methodology for the analysis of open systems based on process calculi and bisimilarity. Open systems are seen as coordinators (i.e. terms with placeholders), that evolve when suitable components (i.e. closed terms) fill in their placeholders. The distinguishing feature of our approach is the definition of a symbolic operational semantics for coordinators that exploits spatial/modal formulae as labels of transitions and avoids the universal closure of coordinators w.r.t. all components. Two kinds of bisimilarities are then defined, called strict and large, which differ in the way formulae are compared. Strict bisimilarity implies large bisimilarity which, in turn, implies the one based on universal closure. Moreover, for process calculi in suitable formats, we show how the symbolic semantics can be defined constructively, using unification. Our approach is illustrated on a toy process calculus with ccslike communication within ambients. 1
An Interactive Semantics of Logic Programming
 THEORY AND PRACTICE OF LOGIC PROGRAMMING
, 2001
"... We apply to logic programming some recently emerging ideas from the field of reductionbased communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
We apply to logic programming some recently emerging ideas from the field of reductionbased communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.
Observational Equivalence for Synchronized Graph Rewriting with Mobility
, 2001
"... We introduce a notion of bisimulation for graph rewriting systems, allowing us to prove observational equivalence for dynamically evolving graphs and networks. We use the framework of synchronized graph rewriting with mobility which we describe in two different, but operationally equivalent ways: on ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
We introduce a notion of bisimulation for graph rewriting systems, allowing us to prove observational equivalence for dynamically evolving graphs and networks. We use the framework of synchronized graph rewriting with mobility which we describe in two different, but operationally equivalent ways: on graphs defined as syntactic judgements and by using tile logic. One of the main results of the paper says that bisimilarity for synchronized graph rewriting is a congruence whenever the rewriting rules satisfy the basic source property. Furthermore we introduce an upto technique simplifying bisimilarity proofs and use it in an example to show the equivalence of a communication network and its specification.
Deriving weak bisimulation congruences from reduction systems
 In: CONCUR ‘05: Proceedings of the 16th international conference on Concurrency theory. Volume 3653 of Lecture Notes in Computer Science., SpringerVerlag
, 2005
"... Abstract. The focus of process calculi is interaction rather than computation, and for this very reason: (i) their operational semantics is conveniently expressed by labelled transition systems (LTSs) whose labels model the possible interactions with the environment; (ii) their abstract semantics is ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
(Show Context)
Abstract. The focus of process calculi is interaction rather than computation, and for this very reason: (i) their operational semantics is conveniently expressed by labelled transition systems (LTSs) whose labels model the possible interactions with the environment; (ii) their abstract semantics is conveniently expressed by observational congruences. However, many currentday process calculi are more easily equipped with reduction semantics, where the notion of observable action is missing. Recent techniques attempted to bridge this gap by synthesising LTSs whose labels are process contexts that enable reactions and for which bisimulation is a congruence. Starting from Sewell’s settheoretic construction, categorytheoretic techniques were defined and based on Leifer and Milner’s relative pushouts, later refined by Sassone and the fourth author to deal with structural congruences given as groupoidal 2categories. Building on recent works concerning observational equivalences for tile logic, the paper demonstrates that double categories provide an elegant setting in which the aforementioned contributions can be studied. Moreover, the formalism allows for a straightforward and natural definition of weak observational congruence. 1
Contributions to the Theory of Syntax with Bindings and to Process Algebra
, 2010
"... We develop a theory of syntax with bindings, focusing on: methodological issues concerning the convenient representation of syntax; techniques for recursive definitions and inductive reasoning. Our approach consists of a combination of FOAS (FirstOrder Abstract Syntax) and HOAS (HigherOrder Abst ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
(Show Context)
We develop a theory of syntax with bindings, focusing on: methodological issues concerning the convenient representation of syntax; techniques for recursive definitions and inductive reasoning. Our approach consists of a combination of FOAS (FirstOrder Abstract Syntax) and HOAS (HigherOrder Abstract Syntax) and tries to take advantage of the best of both worlds. The connection between FOAS and HOAS follows some general patterns and is presented as a (formally certified) statement of adequacy. We also develop a general technique for proving bisimilarity in process algebra Our technique, presented as a formal proof system, is applicable to a wide range of process algebras. The proof system is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular ” manner, inside coinductive proof loops. All the work presented here has been formalized in the Isabelle theorem prover. The formalization is performed in a general setting: arbitrary manysorted syntax with bindings and arbitrary SOSspecified process algebra in de Simone format. The usefulness of our techniques is illustrated by several formalized case studies: a development of callbyname and callbyvalue λcalculus with constants, including ChurchRosser theorems, connection with de Bruijn representation, connection with other Isabelle formalizations, HOAS representation, and contituationpassingstyle (CPS) transformation; a proof in HOAS of strong normalization for the polymorphic secondorder λcalculus (a.k.a. System F). We also indicate the outline and some details of the formal development. ii to Leili R. Marleene iii
Incremental patternbased coinduction for process algebra and its Isabelle formalization
"... Abstract. We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patt ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
(Show Context)
Abstract. We present a coinductive proof system for bisimilarity in transition systems specifiable in the de Simone SOS format. Our coinduction is incremental, in that it allows building incrementally an a priori unknown bisimulation, and patternbased, in that it works on equalities of process patterns (i.e., universally quantified equations of process terms containing process variables), thus taking advantage of equational reasoning in a “circular ” manner, inside coinductive proof loops. The proof system has been formalized and proved sound in Isabelle/HOL. 1
Appligraph: Applications of Graph Transformation  Fourth Annual Progress Report
, 2001
"... This report summarizes the activities in the fourth year of the ESPRIT Working Group APPLIGRAPH, covering the period from April 1, 2000, to March 31, 2001. The principal objective of this Working Group is to promote applied graph transformation as a rulebased framework for the specication and devel ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This report summarizes the activities in the fourth year of the ESPRIT Working Group APPLIGRAPH, covering the period from April 1, 2000, to March 31, 2001. The principal objective of this Working Group is to promote applied graph transformation as a rulebased framework for the specication and development of systems, languages, and tools and to improve the awareness of its industrial relevance
Comparing HigherOrder Encodings in Logical Frameworks and Tile Logic
, 2001
"... In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tr ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
In recent years, logical frameworks and tile logic have been separately proposed by our research groups, respectively in Udine and in Pisa, as suitable metalanguages with higherorder features for encoding and studying nominal calculi. This paper discusses the main features of the two approaches, tracing di#erences and analogies on the basis of two case studies: late #calculus and lazy simply typed #calculus.
First Order and Higher Order Tile Models for Open and Mobile Systems
 In Proceedings of TOSCA'00, Workshop Annuale del Progetto TOSCA, 2000. Virtual Proceedings
, 2000
"... h ground and open terms in a uniform way. To this aim, transition labels become pairs, whose components are called triggers (expressing the interaction of a context with its arguments) and effect (representing the behavior offered to the rest of the system, i.e. a possible context). Tiles can be rep ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
h ground and open terms in a uniform way. To this aim, transition labels become pairs, whose components are called triggers (expressing the interaction of a context with its arguments) and effect (representing the behavior offered to the rest of the system, i.e. a possible context). Tiles can be represented as rectangles where the horizontal dimension is devoted to the assembling of states and the vertical dimension is dedicated to the evolution of components. Thus, triggers and effects form the left and right sides of tiles, respectively. The vertices of tiles are called interfaces, connecting the input and output observations to the initial (before the step) and final (after the step) configurations. Thanks to the abstract notions of configuration and observation, tiles allow us to develop a theoretical framework parametric in such structures (e.g. graphs or hypergraphs or trees or lterms rather than terms), and able to capture analogies in the structures by means of suitable auxili
Dynamic Bisimilarity for Reconfigurable and Mobile Systems Via Tile Logic
"... this paper we consider bisimulation equivalences [33, 37] (with bisimilarity meaning the maximal bisimulation), where the entire branching structure of the transition system is accounted for: informally, two states are equivalent if whatever transition one can perform, the other can simulate it via ..."
Abstract
 Add to MetaCart
this paper we consider bisimulation equivalences [33, 37] (with bisimilarity meaning the maximal bisimulation), where the entire branching structure of the transition system is accounted for: informally, two states are equivalent if whatever transition one can perform, the other can simulate it via a transition with the same observation, still ending in equivalent states.