Results 1  10
of
17
Recursive analysis characterized as a class of real recursive functions
 Fundamenta Informaticae
, 2006
"... Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real r ..."
Abstract

Cited by 22 (8 self)
 Add to MetaCart
(Show Context)
Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.
A survey on continuous time computations
 New Computational Paradigms
"... Abstract. We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing resu ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
Abstract. We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature. 1
The Elementary Computable Functions over the Real Numbers: Applying Two New Techniques. Archives for Mathematical Logic
, 2008
"... The basic motivation behind this work is to tie together various computational complexity classes, whether over different domains such as the naturals or the reals, or whether defined in different manners, via function algebras (Real Recursive Functions) or via Turing Machines (Computable Analysis). ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
(Show Context)
The basic motivation behind this work is to tie together various computational complexity classes, whether over different domains such as the naturals or the reals, or whether defined in different manners, via function algebras (Real Recursive Functions) or via Turing Machines (Computable Analysis). We provide general tools for investigating these issues, using two techniques we call approximation and lifting. We use these methods to obtain two main theorems. First we provide an alternative proof of the result from Campagnolo, Moore and Costa [3], which precisely relates the Kalmar elementary computable functions to a function algebra over the reals. Secondly, we build on that result to extend a result of Bournez and Hainry [1], which provided a function algebra for the C2 real elementary computable functions; our result does not require the restriction to C2 functions. In addition to the extension, we provide an alternative approach to the proof. Their proof involves simulating the operation of a Turing Machine using a function algebra. We avoid this simulation, using a technique we call lifting, which allows us to lift the classic result regarding the elementary computable functions to a result on the reals. The two new techniques bring a different perspective to these problems, and furthermore appear more easily applicable to other problems of this sort. 1
How much can analog and hybrid systems be proved (super)Turing
 Applied Mathematics and Computation
, 2006
"... Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing Machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
(Show Context)
Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing Machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can quantify this, by considering several classes of continuous time dynamical systems, and by studying how much they can be proved Turing or superTuring. 1
Using approximation to relate computational classes over the reals
 MCU 2007, Lecture Notes in Computer Science 4664 (2007
"... Abstract. We use our method of approximation to relate various classes of computable functions over the reals. In particular, we compare Computable Analysis to the two analog models, the General Purpose Analog Computer and Real Recursive Functions. There are a number of existing results in the lite ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We use our method of approximation to relate various classes of computable functions over the reals. In particular, we compare Computable Analysis to the two analog models, the General Purpose Analog Computer and Real Recursive Functions. There are a number of existing results in the literature showing that the different models correspond exactly. We show how these exact correspondences can be broken down into a two step process of approximation and completion. We show that the method of approximation has further application in relating classes of functions, exploiting the transitive nature of the approximation relation. This work builds on our earlier work with our method of approximation, giving more evidence of the breadth of its applicability. 1
The New Promise of Analog Computation
"... Abstract. We show that, using our more or less established framework of inductive definition of realvalued functions (work started by Cristopher Moore in [9]) together with ideas and concepts of standard computability we can prove theorems of Analysis. Then we will consider our ideas as a bridging ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Abstract. We show that, using our more or less established framework of inductive definition of realvalued functions (work started by Cristopher Moore in [9]) together with ideas and concepts of standard computability we can prove theorems of Analysis. Then we will consider our ideas as a bridging tool between the standard Theory of Computability (and Complexity) on one side and Mathematical Analysis on the other, making real recursive functions a possible branch of Descriptive Set Theory. What follows is an Extended Abstract directed to a large audience of
Characterizing Computable Analysis with Differential Equations
, 2008
"... The functions of Computable Analysis are defined by enhancing the capacities of normal Turing Machines to deal with real number inputs. We consider characterizations of these functions using function algebras, known as Real Recursive Functions. Bournez and Hainry 2006 [5] used a function algebra to ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
The functions of Computable Analysis are defined by enhancing the capacities of normal Turing Machines to deal with real number inputs. We consider characterizations of these functions using function algebras, known as Real Recursive Functions. Bournez and Hainry 2006 [5] used a function algebra to characterize the twice continuously differentiable functions of Computable Analysis, restricted to certain compact domains. In a similar model, Shannon’s General Purpose Analog Computer, Bournez et. al. 2007 [3] also characterize the functions of Computable Analysis. We combine the results of [5] and Graça et. al. [13], to show that a different function algebra also yields Computable Analysis. We believe that our function algebra is an improvement due to its simple definition and because the operations in our algebra are less obviously designed to mimic the operations in the usual definition of the recursive functions using the primitive recursion and minimization operators. 1
(appears in CCA 2006)
, 2006
"... methods of approximation and lifting in real computation ..."
(Show Context)
Abstract How much can analog and hybrid systems be proved
"... Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can ..."
Abstract
 Add to MetaCart
Church thesis and its variants say roughly that all reasonable models of computation do not have more power than Turing machines. In a contrapositive way, they say that any model with superTuring power must have something unreasonable. Our aim is to discuss how much theoretical computer science can quantify this, by considering several classes of continuous time dynamical systems, and by studying how much they can be proved Turing or superTuring.
IOS Press Recursive Analysis Characterized as a Class of Real Recursive Functions ∗
"... Abstract. Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.