Results 1  10
of
127
Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
, 1995
"... Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical s ..."
Abstract

Cited by 399 (36 self)
 Add to MetaCart
Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical synapses change a little on each reinstatement, and that remote memory is based on accumulated neocortical changes. Models that learn via changes to connections help explain this organization. These models discover the structure in ensembles of items if learning of each item is gradual and interleaved with learning about other items. This suggests that the neocortex learns slowly to discover the structure in ensembles of experiences. The hippocampal system permits rapid learning of new items without disrupting this structure, and reinstatement of new memories interleaves them with others to integrate them into structured neocortical memory systems.
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 309 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
Efficient Distributionfree Learning of Probabilistic Concepts
 Journal of Computer and System Sciences
, 1993
"... In this paper we investigate a new formal model of machine learning in which the concept (boolean function) to be learned may exhibit uncertain or probabilistic behaviorthus, the same input may sometimes be classified as a positive example and sometimes as a negative example. Such probabilistic c ..."
Abstract

Cited by 197 (8 self)
 Add to MetaCart
In this paper we investigate a new formal model of machine learning in which the concept (boolean function) to be learned may exhibit uncertain or probabilistic behaviorthus, the same input may sometimes be classified as a positive example and sometimes as a negative example. Such probabilistic concepts (or pconcepts) may arise in situations such as weather prediction, where the measured variables and their accuracy are insufficient to determine the outcome with certainty. We adopt from the Valiant model of learning [27] the demands that learning algorithms be efficient and general in the sense that they perform well for a wide class of pconcepts and for any distribution over the domain. In addition to giving many efficient algorithms for learning natural classes of pconcepts, we study and develop in detail an underlying theory of learning pconcepts. 1 Introduction Consider the following scenarios: A meteorologist is attempting to predict tomorrow's weather as accurately as pos...
Toward efficient agnostic learning
 In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, 1992
"... Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtua ..."
Abstract

Cited by 195 (7 self)
 Add to MetaCart
Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the target function. The name derives from the fact that as designers of learning algorithms, we give up the belief that Nature (as represented by the target function) has a simple or succinct explanation. We give a number of positive and negative results that provide an initial outline of the possibilities for agnostic learning. Our results include hardness results for the most obvious generalization of the PAC model to an agnostic setting, an efficient and general agnostic learning method based on dynamic programming, relationships between loss functions for agnostic learning, and an algorithm for a learning problem that involves hidden variables.
Network Information Criterion  Determining the Number of Hidden Units for an Artificial Neural Network Model
 IEEE Transactions on Neural Networks
, 1994
"... The problem of model selection, or determination of the number of hidden units, can be approached statistically, by generalizing Akaike's information criterion (AIC) to be applicable to unfaithful (i.e., unrealizable) models with general loss criteria including regularization terms. The relation bet ..."
Abstract

Cited by 151 (8 self)
 Add to MetaCart
The problem of model selection, or determination of the number of hidden units, can be approached statistically, by generalizing Akaike's information criterion (AIC) to be applicable to unfaithful (i.e., unrealizable) models with general loss criteria including regularization terms. The relation between the training error and the generalization error is studied in terms of the number of the training examples and the complexity of a network which reduces to the number of parameters in the ordinary statistical theory of the AIC. This relation leads to a new Network Information Criterion (NIC) which is useful for selecting the optimal network model based on a given training set. 3 IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 865872, November 1994 y Department of Mathematical Engineering and Information Physics, Faculty of Engineering, University of Tokyo, 731 Hongo, Bunkyoku, Tokyo 113, Japan. 1 Introduction In engineering fields, one of the most important applicati...
Learning Machines
, 1965
"... This book is about machines that learn to discover hidden relationships in data. A constant sfream of data bombards our senses and millions of sensory channels carry information into our brains. Brains are also learning machines that condition, ..."
Abstract

Cited by 150 (0 self)
 Add to MetaCart
This book is about machines that learn to discover hidden relationships in data. A constant sfream of data bombards our senses and millions of sensory channels carry information into our brains. Brains are also learning machines that condition,
First and SecondOrder Methods for Learning: between Steepest Descent and Newton's Method
 Neural Computation
, 1992
"... Online first order backpropagation is sufficiently fast and effective for many largescale classification problems but for very high precision mappings, batch processing may be the method of choice. This paper reviews first and secondorder optimization methods for learning in feedforward neura ..."
Abstract

Cited by 126 (6 self)
 Add to MetaCart
Online first order backpropagation is sufficiently fast and effective for many largescale classification problems but for very high precision mappings, batch processing may be the method of choice. This paper reviews first and secondorder optimization methods for learning in feedforward neural networks. The viewpoint is that of optimization: many methods can be cast in the language of optimization techniques, allowing the transfer to neural nets of detailed results about computational complexity and safety procedures to ensure convergence and to avoid numerical problems. The review is not intended to deliver detailed prescriptions for the most appropriate methods in specific applications, but to illustrate the main characteristics of the different methods and their mutual relations.
Conjunctive Representations in Learning and Memory: Principles of Cortical and Hippocampal Function
 PSYCHOLOGICAL REVIEW
, 2001
"... We present a theoretical framework for understanding the roles of the hippocampus and neocortex in learning and memory. This framework incorporates a theme found in many theories of hippocampal function, that the hippocampus is responsible for developing conjunctive representations binding together ..."
Abstract

Cited by 91 (11 self)
 Add to MetaCart
We present a theoretical framework for understanding the roles of the hippocampus and neocortex in learning and memory. This framework incorporates a theme found in many theories of hippocampal function, that the hippocampus is responsible for developing conjunctive representations binding together stimulus elements into a unitary rep resentation that can later be recalled from partial input cues. This idea appears problematic, however, because it is contradicted by the fact that hippocampally lesioned rats can learn nonlinear discrimination problems that require conjunctive representations. Our framework accommodates this finding by establishing a principled division of labor between the cortex and hippocampus, where the cortex is responsible for slow learning that integrates over multiple experiences to extract generalities, while the hippocampus performs rapid learning of the arbitrary contents of individual experiences. This framework shows that nonlinear discrimination problems are not good tests of hippocampal function, and suggests that tasks involving rapid, incidental conjunctive learning are better. We implement this framework in a computational neural network model, and show that it can account for a wide range of data in animal learning, thus validating our theoretical ideas, and providing a number of insights and predictions about these learning phenomena.
Extracting Comprehensible Models from Trained Neural Networks
, 1996
"... To Mom, Dad, and Susan, for their support and encouragement. ..."
Abstract

Cited by 69 (4 self)
 Add to MetaCart
To Mom, Dad, and Susan, for their support and encouragement.