Results 1  10
of
56
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
Approximation Algorithms for Disjoint Paths Problems
, 1996
"... The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for w ..."
Abstract

Cited by 140 (0 self)
 Add to MetaCart
The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for which very little is known from the point of view of approximation algorithms. It has recently been brought into focus in work on problems such as VLSI layout and routing in highspeed networks; in these settings, the current lack of understanding of the disjoint paths problem is often an obstacle to the design of practical heuristics.
Faster scaling algorithms for network problems
 SIAM J. COMPUT
, 1989
"... This paper presents algorithms for the assignment problem, the transportation problem, and the minimumcost flow problem of operations research. The algorithms find a minimumcost solution, yet run in time close to the bestknown bounds for the corresponding problems without costs. For example, the ..."
Abstract

Cited by 126 (4 self)
 Add to MetaCart
This paper presents algorithms for the assignment problem, the transportation problem, and the minimumcost flow problem of operations research. The algorithms find a minimumcost solution, yet run in time close to the bestknown bounds for the corresponding problems without costs. For example, the assignment problem (equivalently, minimumcost matching in a bipartite graph) can be solved in O(v/’rn log(nN)) time, where n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate optimum solution is found, rather than an exact optimum.
A FASTER STRONGLY POLYNOMIAL MINIMUM COST FLOW ALGORITHM
, 1991
"... In this paper, we present a new strongly polynomial time algorithm for the minimum cost flow problem, based on a refinement of the EdmondsKarp scaling technique. Our algorithm solves the uncapacitated minimum cost flow problem as a sequence of O(n log n) shortest path problems on networks with n no ..."
Abstract

Cited by 116 (10 self)
 Add to MetaCart
In this paper, we present a new strongly polynomial time algorithm for the minimum cost flow problem, based on a refinement of the EdmondsKarp scaling technique. Our algorithm solves the uncapacitated minimum cost flow problem as a sequence of O(n log n) shortest path problems on networks with n nodes and m arcs and runs in O(n log n (m + n log n)) time. Using a standard transformation, thjis approach yields an O(m log n (m + n log n)) algorithm for the capacitated minimum cost flow problem. This algorithm improves the best previous strongly polynomial time algorithm, due to Z. Galil and E. Tardos, by a factor of n 2 /m. Our algorithm for the capacitated minimum cost flow problem is even more efficient if the number of arcs with finite upper bounds, say n', is much less than m. In this case, the running time of the algorithm is O((m ' + n)log n(m + n log n)).
An Efficient Implementation Of A Scaling MinimumCost Flow Algorithm
 Journal of Algorithms
, 1992
"... . The scaling pushrelabel method is an important theoretical development in the area of minimumcost flow algorithms. We study practical implementations of this method. We are especially interested in heuristics which improve reallife performance of the method. Our implementation works very well o ..."
Abstract

Cited by 99 (7 self)
 Add to MetaCart
. The scaling pushrelabel method is an important theoretical development in the area of minimumcost flow algorithms. We study practical implementations of this method. We are especially interested in heuristics which improve reallife performance of the method. Our implementation works very well over a wide range of problem classes. In our experiments, it was always competitive with the established codes, and usually outperformed these codes by a wide margin. Some heuristics we develop may apply to other network algorithms. Our experimental work on the minimumcost flow problem motivated theoretical work on related problems. Supported in part by ONR Young Investigator Award N0001491J1855, NSF Presidential Young Investigator Grant CCR8858097 with matching funds from AT&T and DEC, Stanford University Office of Technology Licensing, and a grant form the Powell Foundation. 1 1. Introduction. Significant theoretical progress has been made recently in the area of minimumcost flow ...
On Network Correlated Data Gathering
 IN IEEE INFOCOM
, 2004
"... We consider the problem of correlated data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. Two coding strategies are analyzed: a SlepianWolf ..."
Abstract

Cited by 98 (9 self)
 Add to MetaCart
We consider the problem of correlated data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. Two coding strategies are analyzed: a SlepianWolf model where optimal coding is complex and transmission optimization is simple, and a joint entropy coding model with explicit communication where coding is simple and transmission optimization is difficult. This problem requires a joint optimization of the rate allocation at the nodes and of the transmission structure. For the SlepianWolf setting, we derive a closed form solution and an efficient distributed approximation algorithm with a good performance. For the explicit communication case, we prove that building an optimal data gathering tree is NPcomplete and we propose various distributed approximation algorithms.
A Combinatorial, Strongly PolynomialTime Algorithm for Minimizing Submodular Functions
, 2000
"... algorithm for minimizing submodular functions, answering an open question posed in 1981 by GrStschel, Lovsz, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting ..."
Abstract

Cited by 60 (5 self)
 Add to MetaCart
algorithm for minimizing submodular functions, answering an open question posed in 1981 by GrStschel, Lovsz, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting algorithm runs in time bounded by a polynomial in the size of the underlying set and the largest length of the function value. The paper also presents a strongly polynomialtime version that runs in time bounded by a polynomial in the size of the underlying set independent of the function value.
New scaling algorithms for the assignment and minimum mean cycle problems
, 1992
"... In this paper we suggest new scaling algorithms for the assignment and minimum mean cycle problems. Our assignment algorithm is based on applying scaling to a hybrid version of the recent auction algorithm of Bertsekas and the successive shortest path algorithm. The algorithm proceeds by relaxing th ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
In this paper we suggest new scaling algorithms for the assignment and minimum mean cycle problems. Our assignment algorithm is based on applying scaling to a hybrid version of the recent auction algorithm of Bertsekas and the successive shortest path algorithm. The algorithm proceeds by relaxing the optimality conditions, and the amount of relaxation is successively reduced to zero. On a network with 2n nodes, m arcs, and integer arc costs bounded by C, the algorithm runs in O(,/n m log(nC)) time and uses very simple data structures. This time bound is comparable to the time taken by Gabow and Tarjan's scaling algorithm, and is better than all other time bounds under the similarity assumption, i.e., C = O(n k) for some k. We next consider the minimum mean cycle problem. The mean cost of a cycle is defined as the cost of the cycle divided by the number of arcs it contains. The minimum mean cycle problem is to identify a cycle whose mean cost is minimum. We show that by using ideas of the assignment algorithm in an approximate binary search procedure, the minimum mean cycle problem can also be solved in O(~/n m log nC) time. Under the similarity assumption, this is the best available time bound to solve the minimum mean cycle problem.