Results 1  10
of
194
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 1384 (52 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an αβswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an αexpansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
A Survey of Image Registration Techniques
 ACM Computing Surveys
, 1992
"... Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These ..."
Abstract

Cited by 698 (2 self)
 Add to MetaCart
Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These techniques have been independently studied for several different applications resulting in a large body of research. This paper organizes this material by establishing the relationship between the distortions in the image and the type of registration techniques which are most suitable. Two major types of distortions are distinguished. The first type are those which are the source of misregistration, i.e., they are the cause of the misalignment between the two images. Distortions which are the source of misregistration determine the transformation class which will optimally align the two images. The transformation class in turn influences the general technique that should be taken....
Enhanced Hypertext Categorization Using Hyperlinks
, 1998
"... A major challenge in indexing unstructured hypertext databases is to automatically extract metadata that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profilebased routing and filtering. Therefore, an accurate classifier is ..."
Abstract

Cited by 383 (8 self)
 Add to MetaCart
A major challenge in indexing unstructured hypertext databases is to automatically extract metadata that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profilebased routing and filtering. Therefore, an accurate classifier is an essential component of a hypertext database. Hyperlinks pose new problems not addressed in the extensive text classification literature. Links clearly contain highquality semantic clues that are lost upon a purely termbased classifier, but exploiting link information is nontrivial because it is noisy. Naive use of terms in the link neighborhood of a document can even degrade accuracy. Our contribution is to propose robust statistical models and a relaxation labeling technique for better classification by exploiting link information in a small neighborhood around documents. Our technique also adapts gracefully to the fraction of neighboring documents having known topics. We experimented ...
Connectionist Learning Procedures
 ARTIFICIAL INTELLIGENCE
, 1989
"... A major goal of research on networks of neuronlike processing units is to discover efficient learning procedures that allow these networks to construct complex internal representations of their environment. The learning procedures must be capable of modifying the connection strengths in such a way ..."
Abstract

Cited by 339 (6 self)
 Add to MetaCart
A major goal of research on networks of neuronlike processing units is to discover efficient learning procedures that allow these networks to construct complex internal representations of their environment. The learning procedures must be capable of modifying the connection strengths in such a way that internal units which are not part of the input or output come to represent important features of the task domain. Several interesting gradientdescent procedures have recently been discovered. Each connection computes the derivative, with respect to the connection strength, of a global measure of the error in the performance of the network. The strength is then adjusted in the direction that decreases the error. These relatively simple, gradientdescent learning procedures work well for small tasks and the new challenge is to find ways of improving their convergence rate and their generalization abilities so that they can be applied to larger, more realistic tasks.
A Graduated Assignment Algorithm for Graph Matching
, 1996
"... A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational comp ..."
Abstract

Cited by 285 (15 self)
 Add to MetaCart
A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(lm), where l and m are the number of links in the two graphs] and robustness in the presence of noise offer advantages over traditional combinatorial approaches. The algorithm, not restricted to any special class of graph, is applied to subgraph isomorphism, weighted graph matching, and attributed relational graph matching. To illustrate the performance of the algorithm, attributed relational graphs derived from objects are matched. Then, results from twentyfive thousand experiments conducted on 100 node random graphs of varying types (graphs with only zeroone links, weighted graphs, and graphs with node attributes and multiple link types) are reported. No comparable results have...
Extracting product features and opinions from reviews
, 2005
"... Consumers are often forced to wade through many online reviews in order to make an informed product choice. This paper introduces OPINE, an unsupervised informationextraction system which mines reviews in order to build a model of important product features, their evaluation by reviewers, and their ..."
Abstract

Cited by 236 (3 self)
 Add to MetaCart
Consumers are often forced to wade through many online reviews in order to make an informed product choice. This paper introduces OPINE, an unsupervised informationextraction system which mines reviews in order to build a model of important product features, their evaluation by reviewers, and their relative quality across products. Compared to previous work, OPINE achieves 22 % higher precision (with only 3 % lower recall) on the feature extraction task. OPINE’s novel use of relaxation labeling for finding the semantic orientation of words in context leads to strong performance on the tasks of finding opinion phrases and their polarity. 1
Numerical Shape from Shading and Occluding Boundaries
 Artifical Intelligence
, 1981
"... An iterative method for computing shape from shading using occluding boundary information is proposed. Some applications of this method are shown. We employ the stereographic plane to express the orientations of surface patches, rather than the more commonly.used gradient space. Use of the stereogra ..."
Abstract

Cited by 191 (14 self)
 Add to MetaCart
An iterative method for computing shape from shading using occluding boundary information is proposed. Some applications of this method are shown. We employ the stereographic plane to express the orientations of surface patches, rather than the more commonly.used gradient space. Use of the stereographic plane makes it possible to incorporate occluding boundary information, but forces us to employ a smoothness constraint different from the one previously proposed. The new constraint follows directly from a particular definition of surface smoothness. We solve the set of equations arising from the smoothness constraints and the imageirradiance equation iteratively, using occluding boundary information to supply boundary conditions. Good initial values are found at certain points to help reduce the number of iterations required to reach a reasonable solution. Numerical experiments show that the method is effective and robust. Finally, we analyze scanning electron microscope (SEM) pictures using this method. Other applications are also proposed. 1.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Collective classification in network data
, 2008
"... Numerous realworld applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification te ..."
Abstract

Cited by 98 (27 self)
 Add to MetaCart
Numerous realworld applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such data. In this report, we attempt to provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and realworld data. 1