Results 1  10
of
79
The LOCOI Lossless Image Compression Algorithm: Principles and Standardization into JPEGLS
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... LOCOI (LOw COmplexity LOssless COmpression for Images) is the algorithm at the core of the new ISO/ITU standard for lossless and nearlossless compression of continuoustone images, JPEGLS. It is conceived as a "low complexity projection" of the universal context modeling paradigm, matching its mo ..."
Abstract

Cited by 152 (10 self)
 Add to MetaCart
LOCOI (LOw COmplexity LOssless COmpression for Images) is the algorithm at the core of the new ISO/ITU standard for lossless and nearlossless compression of continuoustone images, JPEGLS. It is conceived as a "low complexity projection" of the universal context modeling paradigm, matching its modeling unit to a simple coding unit. By combining simplicity with the compression potential of context models, the algorithm "enjoys the best of both worlds." It is based on a simple fixed context model, which approaches the capability of the more complex universal techniques for capturing highorder dependencies. The model is tuned for efficient performance in conjunction with an extended family of Golombtype codes, which are adaptively chosen, and an embedded alphabet extension for coding of lowentropy image regions. LOCOI attains compression ratios similar or superior to those obtained with stateoftheart schemes based on arithmetic coding. Moreover, it is within a few percentage points of the best available compression ratios, at a much lower complexity level. We discuss the principles underlying the design of LOCOI, and its standardization into JPEGLS.
Arithmetic coding revisited
 ACM Transactions on Information Systems
, 1995
"... Over the last decade, arithmetic coding has emerged as an important compression tool. It is now the method of choice for adaptive coding on multisymbol alphabets because of its speed, low storage requirements, and effectiveness of compression. This article describes a new implementation of arithmeti ..."
Abstract

Cited by 139 (2 self)
 Add to MetaCart
Over the last decade, arithmetic coding has emerged as an important compression tool. It is now the method of choice for adaptive coding on multisymbol alphabets because of its speed, low storage requirements, and effectiveness of compression. This article describes a new implementation of arithmetic coding that incorporates several improvements over a widely used earlier version by Witten, Neal, and Cleary, which has become a de facto standard. These improvements include fewer multiplicative operations, greatly extended range of alphabet sizes and symbol probabilities, and the use of lowprecision arithmetic, permitting implementation by fast shift/add operations. We also describe a modular structure that separates the coding, modeling, and probability estimation components of a compression system. To motivate the improved coder, we consider the needs of a wordbased text compression program. We report a range of experimental results using this and other models. Complete source code is available.
Efficient Algorithms for Online Decision Problems
 J. Comput. Syst. Sci
, 2003
"... In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when t ..."
Abstract

Cited by 136 (3 self)
 Add to MetaCart
In an online decision problem, one makes a sequence of decisions without knowledge of the future. Tools from learning such as Weighted Majority and its many variants [13, 18, 4] demonstrate that online algorithms can perform nearly as well as the best single decision chosen in hindsight, even when there are exponentially many possible decisions. However, the naive application of these algorithms is inefficient for such large problems. For some problems with nice structure, specialized efficient solutions have been developed [10, 16, 17, 6, 3].
Design and analysis of dynamic Huffman codes
 Journal of the ACM
, 1987
"... Abstract. A new onepass algorithm for constructing dynamic Huffman codes is introduced and analyzed. We also analyze the onepass algorithm due to Failer, Gallager, and Knuth. In each algorithm, both the sender and the receiver maintain equivalent dynamically varying Huffman trees, and the coding i ..."
Abstract

Cited by 88 (3 self)
 Add to MetaCart
Abstract. A new onepass algorithm for constructing dynamic Huffman codes is introduced and analyzed. We also analyze the onepass algorithm due to Failer, Gallager, and Knuth. In each algorithm, both the sender and the receiver maintain equivalent dynamically varying Huffman trees, and the coding is done in real time. We show that the number of bits used by the new algorithm to encode a message containing t letters is < t bits more than that used by the conventional twopass Huffman scheme, independent of the alphabet size. This is best possible in the worst case, for any onepass Huffman method. Tight upper and lower bounds are derived. Empirical tests show that the encodings produced by the new algorithm are shorter than those of the other onepass algorithm and, except for long messages, are shorter than those of the twopass method. The new algorithm is well suited for online encoding/decoding in data networks and for file compression.
Data Compression
 ACM Computing Surveys
, 1987
"... This paper surveys a variety of data compression methods spanning almost forty years of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique developed in 1986. The aim of data compression is to reduce redundancy in stored or communicated data, thus increasing effectiv ..."
Abstract

Cited by 87 (3 self)
 Add to MetaCart
This paper surveys a variety of data compression methods spanning almost forty years of research, from the work of Shannon, Fano and Huffman in the late 40's to a technique developed in 1986. The aim of data compression is to reduce redundancy in stored or communicated data, thus increasing effective data density. Data compression has important application in the areas of file storage and distributed systems. Concepts from information theory, as they relate to the goals and evaluation of data compression methods, are discussed briefly. A framework for evaluation and comparison of methods is constructed and applied to the algorithms presented. Comparisons of both theoretical and empirical natures are reported and possibilities for future research are suggested. INTRODUCTION Data compression is often referred to as coding, where coding is a very general term encompassing any special representation of data which satisfies a given need. Information theory is defined to be the study of eff...
Data Compression and Database Performance
 In Proc. ACM/IEEECS Symp. On Applied Computing
, 1991
"... Data compression is widely used in data management to save storage space and network bandwidth. In this report, we outline the performance improvements that can be achieved by exploiting data compression in query processing. The novel idea is to leave data in compressed state as long as possible, an ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
Data compression is widely used in data management to save storage space and network bandwidth. In this report, we outline the performance improvements that can be achieved by exploiting data compression in query processing. The novel idea is to leave data in compressed state as long as possible, and to only uncompress data when absolutely necessary. We will show that many query processing algorithms can manipulate compressed data just as well as decompressed data, and that processing compressed data can speed query processing by a factor much larger than the compression factor.
Analysis of Arithmetic Coding for Data Compression
 INFORMATION PROCESSING AND MANAGEMENT
, 1992
"... Arithmetic coding, in conjunction with a suitable probabilistic model, can provide nearly optimal data compression. In this article we analyze the effect that the model and the particular implementation of arithmetic coding have on the code length obtained. Periodic scaling is often used in arithmet ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
Arithmetic coding, in conjunction with a suitable probabilistic model, can provide nearly optimal data compression. In this article we analyze the effect that the model and the particular implementation of arithmetic coding have on the code length obtained. Periodic scaling is often used in arithmetic coding implementations to reduce time and storage requirements; it also introduces a recency effect which can further affect compression. Our main contribution is introducing the concept of weighted entropy and using it to characterize in an elegant way the effect that periodic scaling has on the code length. We explain why and by how much scaling increases the code length for files with a homogeneous distribution of symbols, and we characterize the reduction in code length due to scaling for files exhibiting locality of reference. We also give a rigorous proof that the coding effects of rounding scaled weights, using integer arithmetic, and encoding endoffile are negligible.
Fast and efficient lossless image compression
 in Proc. 1993 Data Compression Conference, (Snowbird)
, 1993
"... We present a new method for lossless image compression that gives compression comparable to JPEG lossless mode with about five times the speed. Our method, called FELICS, is based on a novel use of two neighboring pixels for both prediction and error modeling. For coding we use single bits, adjusted ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
We present a new method for lossless image compression that gives compression comparable to JPEG lossless mode with about five times the speed. Our method, called FELICS, is based on a novel use of two neighboring pixels for both prediction and error modeling. For coding we use single bits, adjusted binary codes, and Golomb or Rice codes. For the latter we present and analyze a provably good method for estimating the single coding parameter.
Practical Implementations of Arithmetic Coding
 IN IMAGE AND TEXT
, 1992
"... We provide a tutorial on arithmetic coding, showing how it provides nearly optimal data compression and how it can be matched with almost any probabilistic model. We indicate the main disadvantage of arithmetic coding, its slowness, and give the basis of a fast, spaceefficient, approximate arithmet ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
We provide a tutorial on arithmetic coding, showing how it provides nearly optimal data compression and how it can be matched with almost any probabilistic model. We indicate the main disadvantage of arithmetic coding, its slowness, and give the basis of a fast, spaceefficient, approximate arithmetic coder with only minimal loss of compression efficiency. Our coder is based on the replacement of arithmetic by table lookups coupled with a new deterministic probability estimation scheme.
Low Complexity Sequential Lossless Coding for Piecewise Stationary Memoryless Sources
 IEEE Transactions on Information Theory
, 1999
"... Abstract — Three strongly sequential, lossless compression schemes, one with linearly growing perletter computational complexity, and two with fixed perletter complexity, are presented and analyzed for memoryless sources with abruptly changing statistics. The first method, which improves on Willem ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
Abstract — Three strongly sequential, lossless compression schemes, one with linearly growing perletter computational complexity, and two with fixed perletter complexity, are presented and analyzed for memoryless sources with abruptly changing statistics. The first method, which improves on Willems’ weighting approach, asymptotically achieves a lower bound on the redundancy, and hence is optimal. The second scheme achieves redundancy of O (log N=N) when the transitions in the statistics are large, and O (log log N = log N) otherwise. The third approach always achieves redundancy of O ( log N=N). Obviously, the two fixed complexity approaches can be easily combined to achieve the better redundancy between the two. Simulation results support the analytical bounds derived for all the coding schemes. Index Terms — Change detection, ideal code length, minimum description length, piecewisestationary memoryless source, redundancy, segmentation, sequential coding, source block code, strongly sequential coding, transition path, universal coding, weighting. I.