Results 1  10
of
27
Towards Selfverification of HOL Light
 In International Joint Conference on Automated Reasoning
, 2006
"... Abstract. The HOL Light prover is based on a logical kernel consisting of about 400 lines of mostly functional OCaml, whose complete formal verification seems to be quite feasible. We would like to formally verify (i) that the abstract HOL logic is indeed correct, and (ii) that the OCaml code does c ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
(Show Context)
Abstract. The HOL Light prover is based on a logical kernel consisting of about 400 lines of mostly functional OCaml, whose complete formal verification seems to be quite feasible. We would like to formally verify (i) that the abstract HOL logic is indeed correct, and (ii) that the OCaml code does correctly implement this logic. We have performed a full verification of an imperfect but quite detailed model of the basic HOL Light core, without definitional mechanisms, and this verification is entirely conducted with respect to a settheoretic semantics within HOL Light itself. We will duly explain why the obvious logical and pragmatic difficulties do not vitiate this approach, even though it looks impossible or useless at first sight. Extension to include definitional mechanisms seems straightforward enough, and the results so far allay most of our practical worries. 1 Introduction: quis custodiet ipsos custodes? Mathematical proofs are subjected to peer review before publication, but there
Does category theory provide a framework for mathematical structuralism?
 PHILOSOPHIA MATHEMATICA
, 2003
"... Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis à vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Category theory and topos theory have been seen as providing a structuralist framework for mathematics autonomous vis à vis set theory. It is argued here that these theories require a background logic of relations and substantive assumptions addressing mathematical existence of categories themselves. We propose a synthesis of Bell’s “manytopoi” view and modalstructuralism. Surprisingly, a combination of mereology and plural quantification suffices to describe hypothetical large domains, recovering the Grothendieck method of universes. Both topos theory and set theory can be carried out relative to such domains; puzzles about “large categories ” and “proper classes ” are handled in a
Classical And Constructive Hierarchies In Extended Intuitionistic Analysis
"... This paper introduces an extension of Kleene's axiomatization of Brouwer's intuitionistic analysis, in which the classical arithmetical and analytical hierarchies are faithfully represented as hierarchies of the domains of continuity. A domain of continuity is a relation R(#) on Baire sp ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
This paper introduces an extension of Kleene's axiomatization of Brouwer's intuitionistic analysis, in which the classical arithmetical and analytical hierarchies are faithfully represented as hierarchies of the domains of continuity. A domain of continuity is a relation R(#) on Baire space with the property that every constructive partial functional defined on {# : R(#)} is continuous there. The domains of continuity for coincide with the stable relations (those equivalent in to their double negations), while every relation R(#) is equivalent in #) for some stable A(#, #) (which belongs to the classical analytical hierarchy). The logic of is intuitionistic. The axioms of include countable comprehension, bar induction, Troelstra's generalized continuous choice, primitive recursive Markov's Principle and a classical axiom of dependent choices proposed by Krauss. Constructive dependent choices, and constructive and classical countable choice, are theorems.
Choice principles in constructive and classical set theories
 POHLERS (EDS.): PROCEEDINGS OF THE LOGIC COLLOQUIUM 2002
, 2002
"... The objective of this paper is to assay several forms of the axiom of choice that have been deemed constructive. In addition to their deductive relationships, the paper will be concerned with metamathematical properties effected by these choice principles and also with some of their classical models ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
(Show Context)
The objective of this paper is to assay several forms of the axiom of choice that have been deemed constructive. In addition to their deductive relationships, the paper will be concerned with metamathematical properties effected by these choice principles and also with some of their classical models.
Extensionality versus constructivity
 Mathematical logic Quarterly
, 2000
"... We will analyze some extensions of MartinLöf’s constructive type theory by means of extensional set constructors and we will show that often the most natural requirements over them lead to classical logic or even to inconsistency. 1 ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
(Show Context)
We will analyze some extensions of MartinLöf’s constructive type theory by means of extensional set constructors and we will show that often the most natural requirements over them lead to classical logic or even to inconsistency. 1
Axiom of choice and excluded middle in categorical logic
 Bulletin of Symbolic Logic
, 1995
"... ..."
(Show Context)