Results 11  20
of
31
Using synthetic domain theory to prove operational properties of a polymorphic programming language based on strictness
 Manuscript
"... We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a simple and workable axiomatization of domain theory within intuitionistic set theory, in which predomains are (special) sets, and domains are algebras for a simple equational theory. We use the axioms to construct a relationally parametric settheoretic model for a compact but powerful polymorphic programming language, given by a novel extension of intuitionistic linear type theory based on strictness. By applying the model, we establish the fundamental operational properties of the language. 1.
Coherence and Transitivity of Subtyping as Entailment
, 1996
"... The relation of inclusion between types has been suggested by the practice of programming as it enriches the polymorphism of functional languages. We propose a simple (and linear) sequent calculus for subtyping as logical entailment. This allows us to derive a complete and coherent approach to subty ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
The relation of inclusion between types has been suggested by the practice of programming as it enriches the polymorphism of functional languages. We propose a simple (and linear) sequent calculus for subtyping as logical entailment. This allows us to derive a complete and coherent approach to subtyping from a few, logically meaningful sequents. In particular, transitivity and antisymmetry will be derived from elementary logical principles.
The Sreplete construction
 In CTCS 55, pages 96  116. Springer Lecture Notes in Computer Science 953
, 1995
"... this paper: (internal version) if C 1 is a quasitopos, then S ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
this paper: (internal version) if C 1 is a quasitopos, then S
A Game Semantics For Generic Polymorphism
, 1971
"... Genericity is the idea that the same program can work at many dierent data types. Longo, Milstead and Soloviev proposed to capture the inability of generic programs to probe the structure of their instances by the following equational principle: if two generic programs, viewed as terms of type 8X ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
Genericity is the idea that the same program can work at many dierent data types. Longo, Milstead and Soloviev proposed to capture the inability of generic programs to probe the structure of their instances by the following equational principle: if two generic programs, viewed as terms of type 8X:A[X ], are equal at any given instance A[T ], then they are equal at all instances. They proved that this rule is admissible in a certain extension of System F, but nding a semantically motivated model satisfying this principle remained an open problem.
Recursive Types in Kleisli Categories
 Preprint 2004. MFPS Tutorial, April 2007 Classical Domain Theory 75/75
, 1992
"... We show that an enriched version of Freyd's principle of versality holds in the Kleisli category of a commutative strong monad with fixedpoint object. This gives a general categorical setting in which it is possible to model recursive types involving the usual datatype constructors. ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We show that an enriched version of Freyd's principle of versality holds in the Kleisli category of a commutative strong monad with fixedpoint object. This gives a general categorical setting in which it is possible to model recursive types involving the usual datatype constructors.
Type Theory via Exact Categories (Extended Abstract)
 In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science LICS '98
, 1998
"... Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why the construction of a category of partial equivalence relations often produces a cartesian closed category. We show how several familiar examples of categories of partial equivalence relations fit into the general framework. 1 Introduction Partial equivalence relations (and categories of these) are a standard tool in semantics of programming languages, see e.g. [2, 5, 7, 9, 15, 17, 20, 22, 35] and [6, 29] for extensive surveys. They are usefully applied to give proofs of correctness and adequacy since they often provide a cartesian closed category with additional properties. Take for instance a partial equivalence relation on the set of natural numbers: a binary relation R ` N\ThetaN on th...
Maps II: Chasing Diagrams in Categorical Proof Theory
, 1996
"... In categorical proof theory, propositions and proofs are presented as objects and arrows in a category. It thus embodies the strong constructivist paradigms of propositionsastypes and proofsasconstructions, which lie in the foundation of computational logic. Moreover, in the categorical setting, ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
In categorical proof theory, propositions and proofs are presented as objects and arrows in a category. It thus embodies the strong constructivist paradigms of propositionsastypes and proofsasconstructions, which lie in the foundation of computational logic. Moreover, in the categorical setting, a third paradigm arises, not available elsewhere: logicaloperationsasadjunctions. It offers an answer to the notorious question of the equality of proofs. So we chase diagrams in algebra of proofs. On the basis of these ideas, the present paper investigates proof theory of regular logic: the f; 9gfragment of the first order logic with equality. The corresponding categorical structure is regular fibration. The examples include stable factorisations, sites, triposes. Regular logic is exactly what is needed to talk about maps, as total and singlevalued relations. However, when enriched with proofsasarrows, this familiar concept must be supplied with an additional conversion rule, conn...
An Introduction to Polymorphic Lambda Calculus
 Logical Foundations of Functional Programming
, 1994
"... Introduction to the Polymorphic Lambda Calculus John C. Reynolds Carnegie Mellon University December 23, 1994 The polymorphic (or secondorder) typed lambda calculus was invented by JeanYves Girard in 1971 [11, 10], and independently reinvented by myself in 1974 [24]. It is extraordinary that ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Introduction to the Polymorphic Lambda Calculus John C. Reynolds Carnegie Mellon University December 23, 1994 The polymorphic (or secondorder) typed lambda calculus was invented by JeanYves Girard in 1971 [11, 10], and independently reinvented by myself in 1974 [24]. It is extraordinary that essentially the same programming language was formulated independently by the two of us, especially since we were led to the language by entirely different motivations. In my own case, I was seeking to extend conventional typed programming languages to permit the definition of "polymorphic" procedures that could accept arguments of a variety of types. I started with the ordinary typed lambda calculus and added the ability to pass types as parameters (an idea that was "in the air" at the time, e.g. [4]). For example, as in the ordinary typed lambda calculus one can write f int!int : x int : f(f (x)) to denote the "doubling" function for the type int, which accepts a function from integers
Relational parametricity for control considered as a computational effect
 Electr. Notes Theor. Comput. Sci
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be