Results 1  10
of
31
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
ECC, an Extended Calculus of Constructions
, 1989
"... We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics ..."
Abstract

Cited by 84 (4 self)
 Add to MetaCart
We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics may be adequately formalized. It is shown that ECC is strongly normalizing and has other nice prooftheoretic properties. An !\GammaSet (realizability) model is described to show how the essential properties of the calculus can be captured settheoretically.
The Discrete Objects in the Effective Topos
 Proc. London Math. Soc
, 1990
"... The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subc ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subcategories arises from
A Uniform Approach to Domain Theory in Realizability Models
 Mathematical Structures in Computer Science
, 1996
"... this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies an ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies and modest sets. Next, in Section 4, we prepare for our development of domain theory with an analysis of nontermination. Previous approaches have used (relatively complicated) categorical formulations of partial maps for this purpose. Instead, motivated by the idea that A provides a primitive programming language, we consider a simple notion of "diverging" computation within A itself. This leads to a theory of divergences from which a notion of (computable) partial function is derived together with a lift monad classifying partial functions. The next task is to isolate a subcategory of modest sets with sufficient structure for supporting analogues of the usual domaintheoretic constructions. First, we expect to be able to interpret the standard constructions of total type theory in this category, so it should inherit cartesianclosure, coproducts and the natural numbers from modest sets. Second, it should interact well with the notion of partiality, so it should be closed under application of the lift functor. Third, it should allow the recursive definition of partial functions. This is achieved by obtaining a fixpoint object in the category, as defined in (Crole and Pitts 1992). Finally, although there is in principle no definitive list of requirements on such a category, one would like it to support more complicated constructions such as those required to interpret polymorphic and recursive types. The central part of the paper (Sections 5, 6, 7 and 9) is devoted to establish...
On functors expressible in the polymorphic typed lambda calculus
 Logical Foundations of Functional Programming
, 1990
"... This is a preprint of a paper that has been submitted to Information and Computation. ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
This is a preprint of a paper that has been submitted to Information and Computation.
A Logic of Subtyping
, 1996
"... The relation of inclusion between types has been suggested by the practice of programming, as it enriches the polymorphism of functional languages. We propose a simple (and linear) calculus of sequents for subtyping as logical entailment. This allows us to derive a complete and coherent approach to ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
The relation of inclusion between types has been suggested by the practice of programming, as it enriches the polymorphism of functional languages. We propose a simple (and linear) calculus of sequents for subtyping as logical entailment. This allows us to derive a complete and coherent approach to subtyping from a few, logically meaningful, sequents. In particular, transitivity and antisymmetry will be derived from elementary logical principles, which stresses the power of sequents and Gentzenstyle proof methods. Proof techniques based on cutelimination will be at the core of our results. 1 Introduction 1.1 Motivations, Theories and Models In recent years, several extensions of core functional languages have been proposed to deal with the notion of subtyping; see, for example, [CW85, Mit88, BL90, BCGS91, CMMS91, CG92, PS94, Tiu96, TU96]. These extensions were suggested by the practice of programming in computer science. In particular, they were inspired by the notion of inheritance...
Modified Realizability Toposes and Strong Normalization Proofs (Extended Abstract)
 Typed Lambda Calculi and Applications, LNCS 664
, 1993
"... ) 1 J. M. E. Hyland 2 C.H. L. Ong 3 University of Cambridge, England Abstract This paper is motivated by the discovery that an appropriate quotient SN 3 of the strongly normalising untyped 3terms (where 3 is just a formal constant) forms a partial applicative structure with the inherent appl ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
) 1 J. M. E. Hyland 2 C.H. L. Ong 3 University of Cambridge, England Abstract This paper is motivated by the discovery that an appropriate quotient SN 3 of the strongly normalising untyped 3terms (where 3 is just a formal constant) forms a partial applicative structure with the inherent application operation. The quotient structure satisfies all but one of the axioms of a partial combinatory algebra (pca). We call such partial applicative structures conditionally partial combinatory algebras (cpca). Remarkably, an arbitrary rightabsorptive cpca gives rise to a tripos provided the underlying intuitionistic predicate logic is given an interpretation in the style of Kreisel's modified realizability, as opposed to the standard Kleenestyle realizability. Starting from an arbitrary rightabsorptive cpca U , the tripostotopos construction due to Hyland et al. can then be carried out to build a modified realizability topos TOPm (U ) of nonstandard sets equipped with an equali...
Arrows, like monads, are monoids
 Proc. of 22nd Ann. Conf. on Mathematical Foundations of Programming Semantics, MFPS XXII, v. 158 of Electron. Notes in Theoret. Comput. Sci
, 2006
"... Monads are by now wellestablished as programming construct in functional languages. Recently, the notion of “Arrow ” was introduced by Hughes as an extension, not with one, but with two type parameters. At first, these Arrows may look somewhat arbitrary. Here we show that they are categorically fai ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Monads are by now wellestablished as programming construct in functional languages. Recently, the notion of “Arrow ” was introduced by Hughes as an extension, not with one, but with two type parameters. At first, these Arrows may look somewhat arbitrary. Here we show that they are categorically fairly civilised, by showing that they correspond to monoids in suitable subcategories of bifunctors C op ×C → C. This shows that, at a suitable level of abstraction, arrows are like monads — which are monoids in categories of functors C → C. Freyd categories have been introduced by Power and Robinson to model computational effects, well before Hughes ’ Arrows appeared. It is often claimed (informally) that Arrows are simply Freyd categories. We shall make this claim precise by showing how monoids in categories of bifunctors exactly correspond to Freyd categories.