Results 1  10
of
38
Parametricity and Local Variables
, 1995
"... We propose that the phenomenon of local state may be understood in terms of Strachey 's concept of parametric (i.e., uniform) polymorphism. The intuitive basis for our proposal is the following analogy: a nonlocal procedure is independent of locallydeclared variables in the same way that a pa ..."
Abstract

Cited by 114 (9 self)
 Add to MetaCart
(Show Context)
We propose that the phenomenon of local state may be understood in terms of Strachey 's concept of parametric (i.e., uniform) polymorphism. The intuitive basis for our proposal is the following analogy: a nonlocal procedure is independent of locallydeclared variables in the same way that a parametrically polymorphic function is independent of types to which it is instantiated. A connection between parametricity and representational abstraction was first suggested by J. C. Reynolds. Reynolds used logical relations to formalize this connection in languages with type variables and userdefined types. We use relational parametricity to construct a model for an Algollike language in which interactions between local and nonlocal entities satisfy certain relational criteria. Reasoning about local variables essentially involves proving properties of polymorphic functions. The new model supports straightforward validations of all the test equivalences that have been proposed in the literatu...
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
ECC, an Extended Calculus of Constructions
, 1989
"... We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics ..."
Abstract

Cited by 91 (4 self)
 Add to MetaCart
We present a higherorder calculus ECC which can be seen as an extension of the calculus of constructions [CH88] by adding strong sum types and a fully cumulative type hierarchy. ECC turns out to be rather expressive so that mathematical theories can be abstractly described and abstract mathematics may be adequately formalized. It is shown that ECC is strongly normalizing and has other nice prooftheoretic properties. An !\GammaSet (realizability) model is described to show how the essential properties of the calculus can be captured settheoretically.
The Discrete Objects in the Effective Topos
 Proc. London Math. Soc
, 1990
"... The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subc ..."
Abstract

Cited by 34 (7 self)
 Add to MetaCart
(Show Context)
The original aim of this paper was to give a rather quick and undemanding proof that the effective topos contains two nontrivial small (i.e. internal) full subcategories which are closed under all small limits in the topos (and hence in particular are internally complete). The interest in such subcategories arises from
A Uniform Approach to Domain Theory in Realizability Models
 Mathematical Structures in Computer Science
, 1996
"... this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability&quo ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
this paper we provide a uniform approach to modelling them in categories of modest sets. To do this, we identify appropriate structure for doing "domain theory" in such "realizability models". In Sections 2 and 3 we introduce PCAs and define the associated "realizability" categories of assemblies and modest sets. Next, in Section 4, we prepare for our development of domain theory with an analysis of nontermination. Previous approaches have used (relatively complicated) categorical formulations of partial maps for this purpose. Instead, motivated by the idea that A provides a primitive programming language, we consider a simple notion of "diverging" computation within A itself. This leads to a theory of divergences from which a notion of (computable) partial function is derived together with a lift monad classifying partial functions. The next task is to isolate a subcategory of modest sets with sufficient structure for supporting analogues of the usual domaintheoretic constructions. First, we expect to be able to interpret the standard constructions of total type theory in this category, so it should inherit cartesianclosure, coproducts and the natural numbers from modest sets. Second, it should interact well with the notion of partiality, so it should be closed under application of the lift functor. Third, it should allow the recursive definition of partial functions. This is achieved by obtaining a fixpoint object in the category, as defined in (Crole and Pitts 1992). Finally, although there is in principle no definitive list of requirements on such a category, one would like it to support more complicated constructions such as those required to interpret polymorphic and recursive types. The central part of the paper (Sections 5, 6, 7 and 9) is devoted to establish...
On functors expressible in the polymorphic typed lambda calculus
 Logical Foundations of Functional Programming
, 1990
"... This is a preprint of a paper that has been submitted to Information and Computation. ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
(Show Context)
This is a preprint of a paper that has been submitted to Information and Computation.