Results 1  10
of
33
Topological and Limitspace subcategories of Countablybased Equilogical Spaces
, 2001
"... this paper we show that the two approaches are equivalent for a ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
this paper we show that the two approaches are equivalent for a
Developing Theories of Types and Computability via Realizability
, 2000
"... We investigate the development of theories of types and computability via realizability. ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
(Show Context)
We investigate the development of theories of types and computability via realizability.
Exact Completions and Toposes
 University of Edinburgh
, 2000
"... Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
(Show Context)
Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding &quot;good &quot; quotients of equivalence relations to a simple category with finite limits. This construction is called the exact completion of the original category. Exact completions are not always toposes and it was not known, not even in the realizability and presheaf cases, when or why toposes arise in this way. Exact completions can be obtained as the composition of two related constructions. The first one assigns to a category with finite limits, the &quot;best &quot; regular category (called its regular completion) that embeds it. The second assigns to
A minimalist twolevel foundation for constructive mathematics
, 2008
"... We present a twolevel theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin [MS05]. One level is given by an intensional type theory, called Minimal type theory. This theory extends the settheoretic version introduced in [MS05] with collections. The other lev ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We present a twolevel theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin [MS05]. One level is given by an intensional type theory, called Minimal type theory. This theory extends the settheoretic version introduced in [MS05] with collections. The other level is given by an extensional set theory that is interpreted in the first one by means of a quotient model. This twolevel theory has two main features: it is minimal among the most relevant foundations for constructive mathematics; it is constructive thanks to the way the extensional level is linked to the intensional one which fulfills the “proofsasprograms” paradigm and acts as a programming language.
Inductive Types and Exact Completion
 Ann. Pure Appl. Logic
, 2002
"... Using the theory of exact completions, we show that a specific class of pretopoi, consisting of what we might call "realizability pretopoi", can act as categorical models of certain predicative type theories, including MartinLof type theory. Our main theoretical instrument for doing so is ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
(Show Context)
Using the theory of exact completions, we show that a specific class of pretopoi, consisting of what we might call "realizability pretopoi", can act as categorical models of certain predicative type theories, including MartinLof type theory. Our main theoretical instrument for doing so is a categorical notion, the notion of weak Wtypes, an "intensional" analogue of the "extensional " notion of Wtypes introduced in an article by Moerdijk and Palmgren ([6]). 1
A Characterization Of The Left Exact Categories Whose Exact Completions Are Toposes
, 1999
"... We characterize the categories with finite limits whose exact completions are toposes. We review the examples in the literature and also find new examples and counterexamples. ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
We characterize the categories with finite limits whose exact completions are toposes. We review the examples in the literature and also find new examples and counterexamples.
Type Theory via Exact Categories (Extended Abstract)
 In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science LICS '98
, 1998
"... Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
(Show Context)
Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why the construction of a category of partial equivalence relations often produces a cartesian closed category. We show how several familiar examples of categories of partial equivalence relations fit into the general framework. 1 Introduction Partial equivalence relations (and categories of these) are a standard tool in semantics of programming languages, see e.g. [2, 5, 7, 9, 15, 17, 20, 22, 35] and [6, 29] for extensive surveys. They are usefully applied to give proofs of correctness and adequacy since they often provide a cartesian closed category with additional properties. Take for instance a partial equivalence relation on the set of natural numbers: a binary relation R ` N\ThetaN on th...
ELEMENTARY QUOTIENT COMPLETION
"... Abstract. We extend the notion of exact completion on a category with weak finite limits to Lawvere’s elementary doctrines. We show how any such doctrine admits an elementary quotient completion, which is the universal solution to adding certain quotients. We note that the elementary quotient compl ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. We extend the notion of exact completion on a category with weak finite limits to Lawvere’s elementary doctrines. We show how any such doctrine admits an elementary quotient completion, which is the universal solution to adding certain quotients. We note that the elementary quotient completion can be obtained as the composite of two other universal constructions: one adds effective quotients, the other forces extensionality of morphisms. We also prove that each construction preserves comprehension.