Results 1  10
of
11
KripkeStyle Models for Typed Lambda Calculus
 Annals of Pure and Applied Logic
, 1996
"... The semantics of typed lambda calculus is usually described using Henkin models, consisting of functions over some collection of sets, or concrete cartesian closed categories, which are essentially equivalent. We describe a more general class of Kripkestyle models. In categorical terms, our Kripke ..."
Abstract

Cited by 44 (3 self)
 Add to MetaCart
The semantics of typed lambda calculus is usually described using Henkin models, consisting of functions over some collection of sets, or concrete cartesian closed categories, which are essentially equivalent. We describe a more general class of Kripkestyle models. In categorical terms, our Kripke lambda models are cartesian closed subcategories of the presheaves over a poset. To those familiar with Kripke models of modal or intuitionistic logics, Kripke lambda models are likely to seem adequately \semantic." However, when viewed as cartesian closed categories, they do not have the property variously referred to as concreteness, wellpointedness, or having enough points. While the traditional lambda calculus proof system is not complete for Henkin models that may have empty types, we prove strong completeness for Kripke models. In fact, every set of equations that is closed under implication is the theory of a single Kripke model. We also develop some properties of logical relations ...
Fast and Loose Reasoning is Morally Correct
, 2006
"... Functional programmers often reason about programs as if they were written in a total language, expecting the results to carry over to nontotal (partial) languages. We justify such reasoning. ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
Functional programmers often reason about programs as if they were written in a total language, expecting the results to carry over to nontotal (partial) languages. We justify such reasoning.
The Strength of Some MartinLöf Type Theories
 Arch. Math. Logic
, 1994
"... One objective of this paper is the determination of the prooftheoretic strength of Martin Lof's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely ..."
Abstract

Cited by 25 (5 self)
 Add to MetaCart
One objective of this paper is the determination of the prooftheoretic strength of Martin Lof's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with \Delta 1 2 comprehension and bar induction. As MartinLof intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a strong classical theory. Also the prooftheoretic strength of other inductive types like Aczel's type of iterative sets is investigated in various contexts. Further, we study metamathematical relations between type theories and other frameworks for formalizing constructive mathematics, e.g. Aczel's set theories and theories of operations and classes as developed by Feferman. 0 Introduction MartinLof's intuitionistic theory of types was originally introduce...
TypeTheoretic Methodology For Practical Programming Languages
 DEPARTMENT OF COMPUTER SCIENCE, CORNELL UNIVERSITY
, 1998
"... The significance of type theory to the theory of programming languages has long been recognized. Advances in programming languages have often derived from understanding that stems from type theory. However, these applications of type theory to practical programming languages have been indirect; the ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
The significance of type theory to the theory of programming languages has long been recognized. Advances in programming languages have often derived from understanding that stems from type theory. However, these applications of type theory to practical programming languages have been indirect; the differences between practical languages and type theory have prevented direct connections between the two. This dissertation presents systematic techniques directly relating practical programming languages to type theory. These techniques allow programming languages to be interpreted in the rich mathematical domain of type theory. Such interpretations lead to semantics that are at once denotational and operational, combining the advantages of each, and they also lay the foundation for formal verification of computer programs in type theory. Previous type theories either have not provided adequate expressiveness to interpret practical languages, or have provided such expressiveness at the expense of essential features of the type theory. In particular, no previous type theory has supported a notion of partial functions (needed to interpret recursion in practical languages), and a notion of total functions and objects (needed to reason about data values), and an intrinsic notion of equality (needed for most interesting results). This dissertation presents the first type theory incorporating all three, and discusses issues arising in the design of that type theory. This type theory is used as the target of a typetheoretic semantics for a expressive programming calculus. This calculus may serve as an internal language for a variety of functional programming languages. The semantics is stated as a syntaxdirected embedding of the programming calculus into type theory. A critical point arising in both the type theory and the typetheoretic semantics is the issue of admissibility. Admissibility governs what types it is legal to form recursive functions over. To build a useful type theory for partial functions it is necessary to have a wide class of admissible types. In particular, it is necessary for all the types arising in the typetheoretic semantics to be admissible. In this dissertation I present a class of admissible types that is considerably wider than any previously known class.
The Strength of Some MartinLöf Type Theories
 ARCHIVE FOR MATHEMATICAL LOGIC
, 1994
"... One objective of this paper is the determination of the prooftheoretic strength of MartinLöf's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely th ..."
Abstract

Cited by 14 (10 self)
 Add to MetaCart
One objective of this paper is the determination of the prooftheoretic strength of MartinLöf's type theory with a universe and the type of wellfounded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with \Delta 1 2 comprehension and bar induction. As MartinLöf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a strong classical theory. Also the prooftheoretic strength of other inductive types like Aczel's type of iterative sets is investigated in various contexts. Further, we study metamathematical relations between type theories and other frameworks for formalizing constructive mathematics, e.g. Aczel's set theories and theories of operations and classes as developed by Feferman.
Continuous Functionals of Dependent and Transfinite Types
, 1995
"... this paper we study some extensions of the KleeneKreisel continuous functionals [7, 8] and show that most of the constructions and results, in particular the crucial density theorem, carry over from nite to dependent and transnite types. Following an approach of Ershov we dene the continuous functi ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
this paper we study some extensions of the KleeneKreisel continuous functionals [7, 8] and show that most of the constructions and results, in particular the crucial density theorem, carry over from nite to dependent and transnite types. Following an approach of Ershov we dene the continuous functionals as the total elements in a hierarchy of ErshovScottdomains of partial continuous functionals. In this setting the density theorem says that the total functionals are topologically dense in the partial ones, i.e. every nite (compact) functional has a total extension. We will extend this theorem from function spaces to dependent products and sums and universes. The key to the proof is the introduction of a suitable notion of density and associated with it a notion of codensity for dependent domains with totality. We show that the universe obtained by closing a given family of basic domains with totality under some quantiers has a dense and codense totality provided the totalities on the basic domains are dense and codense and the quantiers preserve density and codensity. In particular we can show that the quantiers and have this preservation property and hence, for example, the closure of the integers and the booleans (which are dense and codense) under and has a dense and codense totality. We also discuss extensions of the density theorem to iterated universes, i.e. universes closed under universe operators. From our results we derive a dependent continuous choice principle and a simple ordertheoretic characterization of extensional equality for total objects. Finally we survey two further applications of density: Waagb's extension of the KreiselLacombeShoeneldTheorem showing the coincidence of the hereditarily eectively continuous hierarchy...
Density Theorems for the DomainsWithTotality Semantics of Dependent Types
 Applied Categorical Structures
, 2000
"... . We study a semantics of dependent types and universe operators based on parametrized domains with totality. The main results are generalizations of the Kleene/Kreisel density theorem for the continuous functionals. This continues work of E. Palmgren and V. Stoltenberg{Hansen on the domain interpre ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
. We study a semantics of dependent types and universe operators based on parametrized domains with totality. The main results are generalizations of the Kleene/Kreisel density theorem for the continuous functionals. This continues work of E. Palmgren and V. Stoltenberg{Hansen on the domain interpretation of dependent types, and of D. Normann on universes of wellfounded types with density. Key words: Continuous functionals, Domains, Totality, Dependent types, Universes 1. Introduction In Mathematical Logic and Computer Science there is growing interest in constructive type theories as developed by Martin{Lof [8]. This paper is concerned with a semantics of such theories within the realm of Ershov{Scott domains [5] with totality [10]. Erik Palmgren and Viggo Stoltenberg{Hansen [15], [17] developed a semantics for a partial type theory (modelling partial functions and functionals) based on the notion of a parametrization, i.e. a domain depending on parameters. Since this semantics wa...
Hybrid PartialTotal Type Theory
, 1995
"... In this paper a hybrid type theory HTT is defined which combines the programming language notion of partial type with the logical notion of total type into a single theory. A new partial type constructor A is added to the type theory: objects in A may diverge, but if they converge, they must be memb ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
In this paper a hybrid type theory HTT is defined which combines the programming language notion of partial type with the logical notion of total type into a single theory. A new partial type constructor A is added to the type theory: objects in A may diverge, but if they converge, they must be members of A. A fixed point typing rule is given to allow for typing of fixed points. The underlying theory is based on ideas from Feferman's Class Theory and Martin Lof's Intuitionistic Type Theory. The extraction paradigm of constructive type theory is extended to allow direct extraction of arbitrary fixed points. Important features of general programming logics such as LCF are preserved, including the typing of all partial functions, a partial ordering ! ¸ on computations, and a fixed point induction principle. The resulting theory is thus intended as a generalpurpose programming logic. Rules are presented and soundness of the theory established. Keywords: Constructive Type Theory, Logics...
Recursive Models of General Inductive Types
 Fundam. Inf
, 1993
"... We give an interpretation of MartinLof's type theory (with universes) extended with generalized inductive types. The model is an extension of the recursive model given by Beeson. By restricting our attention to PER model, we show that the strictness of positivity condition in the definition of gene ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We give an interpretation of MartinLof's type theory (with universes) extended with generalized inductive types. The model is an extension of the recursive model given by Beeson. By restricting our attention to PER model, we show that the strictness of positivity condition in the definition of generalized inductive types can be dropped. It therefore gives an interpretation of general inductive types in MartinLof's type theory. Copyright c fl1993. All rights reserved. Reproduction of all or part of this work is permitted for educational or research purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3) no commercial gain is involved. Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The files are stored as PostScript, in compressed form, with the report number as filename. Alternative...