Results 1  10
of
34
A machinechecked model for a Javalike language, virtual machine and compiler
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 2004
"... We introduce Jinja, a Javalike programming language with a formal semantics designed to exhibit core features of the Java language architecture. Jinja is a compromise between realism of the language and tractability and clarity of the formal semantics. The following aspects are formalised: a big an ..."
Abstract

Cited by 97 (8 self)
 Add to MetaCart
We introduce Jinja, a Javalike programming language with a formal semantics designed to exhibit core features of the Java language architecture. Jinja is a compromise between realism of the language and tractability and clarity of the formal semantics. The following aspects are formalised: a big and a small step operational semantics for Jinja and a proof of their equivalence; a type system and a definite initialisation analysis; a type safety proof of the small step semantics; a virtual machine (JVM), its operational semantics and its type system; a type safety proof for the JVM; a bytecode verifier, i.e. data flow analyser for the JVM; a correctness proof of the bytecode verifier w.r.t. the type system; a compiler and a proof that it preserves semantics and welltypedness. The emphasis of this work is not on particular language features but on providing a unified model of the source language, the virtual machine and the compiler. The whole development has been carried out in the theorem prover Isabelle/HOL.
Interpretation of locales in Isabelle: Theories and proof contexts
 MATHEMATICAL KNOWLEDGE MANAGEMENT (MKM 2006), LNAI 4108
, 2006
"... The generic proof assistant Isabelle provides a landscape of specification contexts that is considerably richer than that of most other provers. Theories are the level of specification where objectlogics are axiomatised. Isabelle’s proof language Isar enables local exploration in contexts generated ..."
Abstract

Cited by 21 (3 self)
 Add to MetaCart
The generic proof assistant Isabelle provides a landscape of specification contexts that is considerably richer than that of most other provers. Theories are the level of specification where objectlogics are axiomatised. Isabelle’s proof language Isar enables local exploration in contexts generated in the course of natural deduction proofs. Finally, locales, which may be seen as detached proof contexts, offer an intermediate level of specification geared towards reuse. All three kinds of contexts are structured, to different extents. We analyse the “topology ” of Isabelle’s landscape of specification contexts, by means of development graphs, in order to establish what kinds of reuse are possible.
A verification environment for sequential imperative programs in Isabelle/HOL
 Logic for Programming, AI, and Reasoning, volume 3452 of LNAI
, 2005
"... Abstract. We develop a general language model for sequential imperative programs together with a Hoare logic. We instantiate the framework with common programming language constructs and integrate it into Isabelle/HOL, to gain a usable and sound verification environment. 1 ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
Abstract. We develop a general language model for sequential imperative programs together with a Hoare logic. We instantiate the framework with common programming language constructs and integrate it into Isabelle/HOL, to gain a usable and sound verification environment. 1
Isabelle/Isar  a generic framework for humanreadable proof documents
 UNIVERSITY OF BIA̷LYSTOK
, 2007
"... ..."
Axiomatic constructor classes in Isabelle/HOLCF
 In In Proc. 18th International Conference on Theorem Proving in Higher Order Logics (TPHOLs ’05), Volume 3603 of Lecture Notes in Computer Science
, 2005
"... Abstract. We have definitionally extended Isabelle/HOLCF to support axiomatic Haskellstyle constructor classes. We have subsequently defined the functor and monad classes, together with their laws, and implemented state and resumption monad transformers as generic constructor class instances. This ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
Abstract. We have definitionally extended Isabelle/HOLCF to support axiomatic Haskellstyle constructor classes. We have subsequently defined the functor and monad classes, together with their laws, and implemented state and resumption monad transformers as generic constructor class instances. This is a step towards our goal of giving modular denotational semantics for concurrent lazy functional programming languages, such as GHC Haskell. 1
A Definitional TwoLevel Approach to Reasoning with HigherOrder Abstract Syntax
 Journal of Automated Reasoning
, 2010
"... Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use it in a multilevel reasoning fashion, similar in spirit to other metalogics such as Linc and Twelf. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of nonstratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuationmachine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly
A Proof Planning Framework for Isabelle
, 2005
"... Proof planning is a paradigm for the automation of proof that focuses on encoding intelligence to guide the proof process. The idea is to capture common patterns of reasoning which can be used to derive abstract descriptions of proofs known as proof plans. These can then be executed to provide fully ..."
Abstract

Cited by 14 (10 self)
 Add to MetaCart
Proof planning is a paradigm for the automation of proof that focuses on encoding intelligence to guide the proof process. The idea is to capture common patterns of reasoning which can be used to derive abstract descriptions of proofs known as proof plans. These can then be executed to provide fully formal proofs. This thesis concerns the development and analysis of a novel approach to proof planning that focuses on an explicit representation of choices during search. We embody our approach as a proof planner for the generic proof assistant Isabelle and use the Isar language, which is humanreadable and machinecheckable, to represent proof plans. Within this framework we develop an inductive theorem prover as a case study of our approach to proof planning. Our prover uses the difference reduction heuristic known as rippling to automate the step cases of the inductive proofs. The development of a flexible approach to rippling that supports its various modifications and extensions is the second major focus of this thesis. Here, our inductive theorem prover provides a context in which to evaluate rippling experimentally. This work results in an efficient and powerful inductive theorem prover for Isabelle as well as proposals for further improving the efficiency of rippling. We also draw observations in order
Constructive type classes in Isabelle
 TYPES FOR PROOFS AND PROGRAMS
, 2007
"... We reconsider the wellknown concept of Haskellstyle type classes within the logical framework of Isabelle. So far, axiomatic type classes in Isabelle merely account for the logical aspect as predicates over types, while the operational part is only a convention based on raw overloading. Our more e ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
We reconsider the wellknown concept of Haskellstyle type classes within the logical framework of Isabelle. So far, axiomatic type classes in Isabelle merely account for the logical aspect as predicates over types, while the operational part is only a convention based on raw overloading. Our more elaborate approach to constructive type classes provides a seamless integration with Isabelle locales, which are able to manage both operations and logical properties uniformly. Thus we combine the convenience of type classes and the flexibility of locales. Furthermore, we construct dictionary terms derived from notions of the type system. This additional internal structure provides satisfactory foundations of type classes, and supports further applications, such as code generation and export of theories and theorems to environments without type classes.
PsiCalculi in Isabelle
 In Proc of the 22nd Conference on Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of LNCS
"... Abstract. Psicalculi are extensions of the picalculus, accommodating arbitrary nominal datatypes to represent not only data but also communication channels, assertions and conditions, giving it an expressive power beyond the applied picalculus and the concurrent constraint picalculus. We have for ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
Abstract. Psicalculi are extensions of the picalculus, accommodating arbitrary nominal datatypes to represent not only data but also communication channels, assertions and conditions, giving it an expressive power beyond the applied picalculus and the concurrent constraint picalculus. We have formalised psicalculi in the interactive theorem prover Isabelle using its nominal datatype package. One distinctive feature is that the framework needs to treat binding sequences, as opposed to single binders, in an efficient way. While different methods for formalising single binder calculi have been proposed over the last decades, representations for such binding sequences are not very well explored. The main effort in the formalisation is to keep the machine checked proofs as close to their penandpaper counterparts as possible. We discuss two approaches to reasoning about binding sequences along with their strengths and weaknesses. We also cover custom induction rules to remove the bulk of manual alphaconversions. 1
PSICALCULI: A FRAMEWORK FOR MOBILE PROCESSES WITH NOMINAL DATA AND LOGIC
"... Abstract. The framework of psicalculi extends the picalculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard picalculus. Psicalculi can capture the same ph ..."
Abstract

Cited by 10 (5 self)
 Add to MetaCart
Abstract. The framework of psicalculi extends the picalculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard picalculus. Psicalculi can capture the same phenomena as other proposed extensions of the picalculus such as the applied picalculus, the spicalculus, the fusion calculus, the concurrent constraint picalculus, and calculi with polyadic communication channels or pattern matching. Psicalculi can be even more general, for example by allowing structured channels, higherorder formalisms such as the lambda calculus for data structures, and predicate logic for assertions. We provide ample comparisons to related calculi and discuss a few significant applications. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psicalculi, all of which have been checked in the interactive theorem prover Isabelle. Expressiveness of psicalculi significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original picalculus. 1.