Results 1  10
of
36
Informationtheoretic computational complexity
 IEEE Transactions on Information Theory
, 1974
"... This paper attempts to describe, in nontechnical language, some of the concepts and methods of one school of thought regarding computational complexity. It applies the viewpoint of information theory to computers. This will first lead us to a definition of the degree of randomness of individual bina ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
This paper attempts to describe, in nontechnical language, some of the concepts and methods of one school of thought regarding computational complexity. It applies the viewpoint of information theory to computers. This will first lead us to a definition of the degree of randomness of individual binary strings, and then to an informationtheoretic version of Gödel's theorem on the limitations of the axiomatic method. Finally, we will examine in the light of these ideas the scientific method and von Neumann's views on the basic conceptual problems of biology. This field's fundamental concept is the complexity of a binary string, that is, a string of bits, of zeros and ones. The complexity of a binary string is the minimum quantity of information needed to define the string. For example, the string of length n consisting entirely of ones is of complexity approximately log 2 n, because only log 2 n bits of information are required to specify n in binary notation. However, this is rather vague. Exactly what is meant by the definition of a string? To make this idea precise a computer is used. One says that a string defines another when the first string gives instructions for constructing the second string. In other words, one string defines another when it is a
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
Constructive Mathematics, in Theory and Programming Practice
, 1997
"... The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). It gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the pap ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). It gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focusses on the relation between constructive mathematics and programming, with emphasis on MartinLof's theory of types as a formal system for BISH.
Proofs Without Syntax
 Annals of Mathematics
"... [M]athematicians care no more for logic than logicians for mathematics. Augustus de Morgan, 1868 Proofs are traditionally syntactic, inductively generated objects. This paper presents an abstract mathematical formulation of propositional calculus (propositional logic) in which proofs are combinatori ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
[M]athematicians care no more for logic than logicians for mathematics. Augustus de Morgan, 1868 Proofs are traditionally syntactic, inductively generated objects. This paper presents an abstract mathematical formulation of propositional calculus (propositional logic) in which proofs are combinatorial (graphtheoretic), rather than syntactic. It defines a combinatorial proof of a proposition φ as a graph homomorphism h: C → G(φ), where G(φ) is a graph associated with φ and C is a coloured graph. The main theorem is soundness and completeness: φ is true if and only if there exists a combinatorial proof h: C → G(φ). 1.
Hilbert’s “Verunglückter Beweis,” the first epsilon theorem and consistency proofs. History and Philosophy of Logic
"... Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One propo ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. On the face of it, Hilbert’s Program was concerned with proving consistency of mathematical systems in a finitary way. This was to be accomplished by showing that that these systems are conservative over finitistically interpretable and obviously sound quantifierfree subsystems. One proposed method of giving such proofs is Hilbert’s epsilonsubstitution method. There was, however, a second approach which was not refelected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert’s first epsilon theorem and a certain “general consistency result. ” An analysis of this socalled “failed proof ” lends further support to an interpretation of Hilbert according to which he was expressly concerned with conservatitvity proofs, even though his publications only mention consistency as the main question. §1. Introduction. The aim of Hilbert’s program for consistency proofs in the 1920s is well known: to formalize mathematics, and to give finitistic consistency proofs of these systems and thus to put mathematics on a “secure foundation.” What is perhaps less well known is exactly how Hilbert thought this should be carried out. Over ten years before Gentzen developed sequent calculus formalizations
External and internal syntax of the λcalculus
 In: Buchberger, Ida, Kutsia (Eds.), Proc. of the AustrianJapanese Workshop on Symbolic Computation in Software Science, SCSS 2008. No. 08–08 in RISCLinz Report Series
"... There is growing interest in the study of the syntactic structure of expressions equipped with a variable binding mechanism. The importance of this study can be justified for various reasons, e.g. educational, scientific and engineering reasons. This study is educationally important since in logic a ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
There is growing interest in the study of the syntactic structure of expressions equipped with a variable binding mechanism. The importance of this study can be justified for various reasons, e.g. educational, scientific and engineering reasons. This study is educationally important since in logic and computer science, we cannot avoid teaching the
Infinite sets that satisfy the principle of omniscience in all varieties of constructive mathematics, MartinLöf formalization, in Agda notation, of part of the paper with the same title
 University of Birmingham, UK, http://www.cs.bham.ac.uk/~mhe/papers/ omniscient/AnInfiniteOmniscientSet.html, September 2011. SETS IN CONSTRUCTIVE MATHEMATICS 21
"... Abstract. We show that there are plenty of infinite sets that satisfy the omniscience principle, in a minimalistic setting for constructive mathematics that is compatible with classical mathematics. A first example of an omniscient set is the onepoint compactification of the natural numbers, also k ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. We show that there are plenty of infinite sets that satisfy the omniscience principle, in a minimalistic setting for constructive mathematics that is compatible with classical mathematics. A first example of an omniscient set is the onepoint compactification of the natural numbers, also known as the generic convergent sequence. We relate this to Grilliot’s and Ishihara’s Tricks. We generalize this example to many infinite subsets of the Cantor space. These subsets turn out to be ordinals in a constructive sense, with respect to the lexicographic order, satisfying both a wellfoundedness condition with respect to decidable subsets, and transfinite induction restricted to decidable predicates. The use of simple types allows us to reach any ordinal below ɛ0, and richer type systems allow us to get higher. §1. Introduction. We show that there are plenty of infinite sets X that satisfy the omniscience principle for every function p: X → 2, ∃x ∈ X(p(x) = 0) ∨ ∀x ∈ X(p(x) = 1). For X finite this is trivial, and for X = N, this is LPO, the limited principle of omniscience, which of course is and will remain a taboo in any variety of