Results 1 
2 of
2
Proofs Without Syntax
 Annals of Mathematics
"... [M]athematicians care no more for logic than logicians for mathematics. Augustus de Morgan, 1868 Proofs are traditionally syntactic, inductively generated objects. This paper presents an abstract mathematical formulation of propositional calculus (propositional logic) in which proofs are combinatori ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
[M]athematicians care no more for logic than logicians for mathematics. Augustus de Morgan, 1868 Proofs are traditionally syntactic, inductively generated objects. This paper presents an abstract mathematical formulation of propositional calculus (propositional logic) in which proofs are combinatorial (graphtheoretic), rather than syntactic. It defines a combinatorial proof of a proposition φ as a graph homomorphism h: C → G(φ), where G(φ) is a graph associated with φ and C is a coloured graph. The main theorem is soundness and completeness: φ is true if and only if there exists a combinatorial proof h: C → G(φ). 1.
Towards Hilbert's 24th Problem: Combinatorial Proof Invariants
, 2006
"... Proofs Without Syntax [37] introduced polynomialtime checkable combinatorial proofs for classical propositional logic. This sequel approaches Hilbert’s 24 th Problem with combinatorial proofs as abstract invariants for sequent calculus proofs, analogous to homotopy groups as abstract invariants for ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Proofs Without Syntax [37] introduced polynomialtime checkable combinatorial proofs for classical propositional logic. This sequel approaches Hilbert’s 24 th Problem with combinatorial proofs as abstract invariants for sequent calculus proofs, analogous to homotopy groups as abstract invariants for topological spaces. The paper lifts a simple, strongly normalising cut elimination from combinatorial proofs to sequent calculus, factorising away the mechanical commutations of structural rules which litter traditional syntactic cut elimination. Sequent calculus fails to be surjective onto combinatorial proofs: the paper extracts a semantically motivated closure of sequent calculus from which there is a surjection, pointing towards an abstract combinatorial refinement of Herbrand’s theorem.