Results 1  10
of
25
Polylogarithmic deterministic fullydynamic graph algorithms I: connectivity and minimum spanning tree
 JOURNAL OF THE ACM
, 1997
"... Deterministic fully dynamic graph algorithms are presented for connectivity and minimum spanning forest. For connectivity, starting with no edges, the amortized cost for maintaining a spanning forest is O(log² n) per update, i.e. per edge insertion or deletion. Deciding connectivity between any two ..."
Abstract

Cited by 125 (6 self)
 Add to MetaCart
Deterministic fully dynamic graph algorithms are presented for connectivity and minimum spanning forest. For connectivity, starting with no edges, the amortized cost for maintaining a spanning forest is O(log² n) per update, i.e. per edge insertion or deletion. Deciding connectivity between any two given vertices is done in O(log n= log log n) time. This matches the previous best randomized bounds. The previous best deterministic bound was O( 3 p n log n) amortized time per update but constant time for connectivity queries. For minimum spanning trees, first a deletionsonly algorithm is presented supporting deletes in amortized time O(log² n). Applying a general reduction from Henzinger and King, we then get a fully dynamic algorithm such that starting with no edges, the amortized cost for maintaining a minimum spanning forest is O(log^4 n) per update. The previous best deterministic bound was O( 3 p n log n) amortized time per update, and no better randomized bounds were ...
Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time per Operation
 JOURNAL OF THE ACM
, 1999
"... This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new d ..."
Abstract

Cited by 54 (0 self)
 Add to MetaCart
This paper solves a longstanding open problem in fully dynamic algorithms: We present the first fully dynamic algorithms that maintain connectivity, bipartiteness, and approximate minimum spanning trees in polylogarithmic time per edge insertion or deletion. The algorithms are designed using a new dynamic technique which combines a novel graph decomposition with randomization. They are LasVegas type randomized algorithms which use simple data structures and have a small constant factor. Let n denote the number of nodes in the graph. For a sequence of \Omega\Gamma m 0 ) operations, where m 0 is the number of edges in the initial graph, the expected time for p updates is O(p log 3 n) 1 for connectivity and bipartiteness. The worstcase time for one query is O(log n= log log n). For the kedge witness problem ("Does the removal of k given edges disconnect the graph?") the expected time for p updates is O(p log 3 n) and expected time for q queries is O(qk log 3 n). Given a grap...
On the Computational Complexity of Dynamic Graph Problems
 THEORETICAL COMPUTER SCIENCE
, 1996
"... ..."
An algorithm for strongly connected component analysis in n log n symbolic steps
 Formal Methods in System Design
"... Abstract. We present a symbolic algorithm for strongly connected component decomposition. The algorithm performs �(n log n) image and preimage computations in the worst case, where n is the number of nodes in the graph. This is an improvement over the previously known quadratic bound. The algorithm ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
Abstract. We present a symbolic algorithm for strongly connected component decomposition. The algorithm performs �(n log n) image and preimage computations in the worst case, where n is the number of nodes in the graph. This is an improvement over the previously known quadratic bound. The algorithm can be used to decide emptiness of Büchi automata with the same complexity bound, improving Emerson and Lei’s quadratic bound, and emptiness of Streett automata, with a similar bound in terms of nodes. It also leads to an improved procedure for the generation of nonemptiness witnesses.
Randomized Dynamic Graph ALgorithms with Polylogarithmic Time per Operation
 PROC. 33RD ANNUAL SYMP. ON FOUNDATIONS OF COMPUTER SCIENCE
, 1995
"... ..."
A Fully Dynamic Algorithm for Maintaining the Transitive Closure
 In Proc. 31st ACM Symposium on Theory of Computing (STOC'99
, 1999
"... This paper presents an efficient fully dynamic graph algorithm for maintaining the transitive closure of a directed graph. The algorithm updates the adjacency matrix of the transitive closure with each update to the graph. Hence, each reachability query of the form "Is there a directed path from i t ..."
Abstract

Cited by 43 (1 self)
 Add to MetaCart
This paper presents an efficient fully dynamic graph algorithm for maintaining the transitive closure of a directed graph. The algorithm updates the adjacency matrix of the transitive closure with each update to the graph. Hence, each reachability query of the form "Is there a directed path from i to j?" can be answered in O(1) time. The algorithm is randomized; it is correct when answering yes, but has O(1/n^c) probability of error when answering no, for any constant c. In acyclic graphs, worst case update time is O(n^2). In general graphs, update time is O(n^(2+alpha)), where alpha = min {.26, maximum size of a strongly connected component}. The space complexity of the algorithm is O(n^2).
Experimental analysis of dynamic all pairs shortest path algorithms
 In Proceedings of the fifteenth annual ACMSIAM symposium on Discrete algorithms
, 2004
"... We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to stat ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to static algorithms on random, realworld and hard instances. Our experimental data suggest that some of the dynamic algorithms and their algorithmic techniques can be really of practical value in many situations. 1
Improved Dynamic Reachability Algorithms for Directed Graphs
, 2002
"... We obtain several new dynamic algorithms for maintaining the transitive closure of a directed graph, and several other algorithms for answering reachability queries without explicitly maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm for maintaining the ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
We obtain several new dynamic algorithms for maintaining the transitive closure of a directed graph, and several other algorithms for answering reachability queries without explicitly maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm for maintaining the transitive closure of a directed graph, through an arbitrary sequence of edge deletions, in O(mn) total expected time, essentially the time needed for computing the transitive closure of the initial graph. Such a result was previously known only for acyclic graphs.
Maintaining Minimum Spanning Trees in Dynamic Graphs
 IN PROC. 24TH INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP
, 1997
"... We present the first fully dynamic algorithm for maintaining a minimum spanning tree in time o( # n) per operation. To be precise, the algorithm uses O(n 1/3 log n) amortized time per update operation. The algorithm is fairly simple and deterministic. An immediate consequence is the first fully dyna ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
We present the first fully dynamic algorithm for maintaining a minimum spanning tree in time o( # n) per operation. To be precise, the algorithm uses O(n 1/3 log n) amortized time per update operation. The algorithm is fairly simple and deterministic. An immediate consequence is the first fully dynamic deterministic algorithm for maintaining connectivity and, bipartiteness in amortized time O(n 1/3 log n) per update, with O(1) worst case time per query.
Speeding up dynamic shortest path algorithms
 AT&T labs Research Technical Report, TD5RJ8B, Florham Park, NJ
, 2003
"... doi 10.1287/ijoc.1070.0231 ..."