Results 1  10
of
27
A New Approach to Dynamic All Pairs Shortest Paths
, 2002
"... We study novel combinatorial properties of graphs that allow us to devise a completely new approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm for general directed graphs with nonnegative realvalued edge weights that supports any sequence of operatio ..."
Abstract

Cited by 73 (9 self)
 Add to MetaCart
We study novel combinatorial properties of graphs that allow us to devise a completely new approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm for general directed graphs with nonnegative realvalued edge weights that supports any sequence of operations in e O(n amortized time per update and unit worstcase time per distance query, where n is the number of vertices. We can also report shortest paths in optimal worstcase time. These bounds improve substantially over previous results and solve a longstanding open problem. Our algorithm is deterministic and uses simple data structures.
Experimental analysis of dynamic all pairs shortest path algorithms
 In Proceedings of the fifteenth annual ACMSIAM symposium on Discrete algorithms
, 2004
"... We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to stat ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We present the results of an extensive computational study on dynamic algorithms for all pairs shortest path problems. We describe our implementations of the recent dynamic algorithms of King and of Demetrescu and Italiano, and compare them to the dynamic algorithm of Ramalingam and Reps and to static algorithms on random, realworld and hard instances. Our experimental data suggest that some of the dynamic algorithms and their algorithmic techniques can be really of practical value in many situations. 1
Fast replanning for navigation in unknown terrain
 Transactions on Robotics
"... Abstract—Mobile robots often operate in domains that are only incompletely known, for example, when they have to move from given start coordinates to given goal coordinates in unknown terrain. In this case, they need to be able to replan quickly as their knowledge of the terrain changes. Stentz ’ Fo ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
Abstract—Mobile robots often operate in domains that are only incompletely known, for example, when they have to move from given start coordinates to given goal coordinates in unknown terrain. In this case, they need to be able to replan quickly as their knowledge of the terrain changes. Stentz ’ Focussed Dynamic A (D) is a heuristic search method that repeatedly determines a shortest path from the current robot coordinates to the goal coordinates while the robot moves along the path. It is able to replan faster than planning from scratch since it modifies its previous search results locally. Consequently, it has been extensively used in mobile robotics. In this article, we introduce an alternative to D that determines the same paths and thus moves the robot in the same way but is algorithmically different. D Lite is simple, can be rigorously analyzed, extendible in multiple ways, and is at least as efficient as D. We believe that our results will make Dlike replanning methods even more popular and enable robotics researchers to adapt them to additional applications. Index Terms—A, D (Dynamic A), navigation in unknown terrain, planning with the freespace assumption, replanning, search, sensorbased path planning. I.
Graphstream: A tool for bridging the gap between complex systems and dynamic graphs
 In EPNACS: Emergent Properties in Natural and Artificial Complex Systems
, 2007
"... Summary. The notion of complex systems is common to many domains, from Biology to Economy, Computer Science, Physics, etc. Often, these systems are made of sets of entities moving in an evolving environment. One of their major characteristics is the emergence of some global properties stemmed from l ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
Summary. The notion of complex systems is common to many domains, from Biology to Economy, Computer Science, Physics, etc. Often, these systems are made of sets of entities moving in an evolving environment. One of their major characteristics is the emergence of some global properties stemmed from local interactions between the entities themselves and between the entities and the environment. The structure of these systems as sets of interacting entities leads researchers to model them as graphs. However, their understanding requires most often to consider the dynamics of their evolution. It is indeed not relevant to study some properties out of any temporal consideration. Thus, dynamic graphs seem to be a very suitable model for investigating the emergence and the conservation of some properties. GraphStream is a Javabased library whose main purpose is to help researchers and developers in their daily tasks of dynamic problem modeling and of classical graph management tasks: creation, processing, display, etc. It may also be used, and is indeed already used, for teaching purpose. GraphStream relies on an eventbased engine allowing several event sources. Events may be included in the core of the application, read from a file or received from an event handler.
Speeding up dynamic shortest path algorithms
 AT&T labs Research Technical Report, TD5RJ8B, Florham Park, NJ
, 2003
"... doi 10.1287/ijoc.1070.0231 ..."
Oracles for Distances Avoiding a Linkfailure
 In Proc. of the 13th IEEE Annual ACMSIAM Symposium on Discrete Algorithms (SODA'02
, 2002
"... For a directed graph G we consider queries of the form: "What is the shortest path distance from vertex x to vertex y in G avoiding a failed link (u,v), and what edge leaving x should we use to get on a such a shortest path?" We show that an oracle for such queries can be stored in O(n 2 logn) sp ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
For a directed graph G we consider queries of the form: "What is the shortest path distance from vertex x to vertex y in G avoiding a failed link (u,v), and what edge leaving x should we use to get on a such a shortest path?" We show that an oracle for such queries can be stored in O(n 2 logn) space with a query time of O(logn). No nontrivial solution was known for this problem.
Dynamic shortest paths and transitive closure: algorithmic techniques and data structures
 J. Discr. Algor
, 2006
"... In this paper, we survey fully dynamic algorithms for path problems on general directed graphs. In particular, we consider two fundamental problems: dynamic transitive closure and dynamic shortest paths. Although research on these problems spans over more than three decades, in the last couple of ye ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
In this paper, we survey fully dynamic algorithms for path problems on general directed graphs. In particular, we consider two fundamental problems: dynamic transitive closure and dynamic shortest paths. Although research on these problems spans over more than three decades, in the last couple of years many novel algorithmic techniques have been proposed. In this survey, we will make a special effort to abstract some combinatorial and algebraic properties, and some common datastructural tools that are at the base of those techniques. This will help us try to present some of the newest results in a unifying framework so that they can be better understood and deployed also by nonspecialists.
Oracles for distances avoiding a failed node or link
 SIAM J. Comput
"... Abstract. We consider the problem of preprocessing an edgeweighted directed graph G to answer queries that ask for the length and first hop of a shortest path from any given vertex x to any given vertex y avoiding any given vertex or edge. As a natural application, this problem models routing in ne ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Abstract. We consider the problem of preprocessing an edgeweighted directed graph G to answer queries that ask for the length and first hop of a shortest path from any given vertex x to any given vertex y avoiding any given vertex or edge. As a natural application, this problem models routing in networks subject to node or link failures. We describe a deterministic oracle with constant query time for this problem that uses O(n2 log n) space, where n is the number of vertices in G. The construction time for our oracle is O(mn2 + n3 log n). However, if one is willing to settle for Θ(n2.5) space, we can improve the preprocessing time to O(mn1.5 + n2.5 log n) while maintaining the constant query time. Our algorithms can find the shortest path avoiding a failed node or link in time proportional to the length of the path.
Improved Bounds and New TradeOffs for Dynamic All Pairs Shortest Paths
"... Let G be a directed graph with n vertices, subject to dynamic updates, and such that each edge weight can assume at most S different arbitrary real values throughout the sequence of updates. We present a new algorithm for maintaining all pairs shortest paths in G in O(S n) amortized time p ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Let G be a directed graph with n vertices, subject to dynamic updates, and such that each edge weight can assume at most S different arbitrary real values throughout the sequence of updates. We present a new algorithm for maintaining all pairs shortest paths in G in O(S n) amortized time per update and in O(1) worstcase time per distance query. This improves over previous bounds. We also show how to obtain query/update tradeoffs for this problem, by introducing two new families of algorithms. Algorithms in the first family achieve an update bound of e O(S \Delta k \Delta n and a query bound of e O(n=k), and improve over the best known update bounds for k in the range (n=S) . Algorithms in the second family achieve an update e O e O(n ), and are competitive with the best known update bounds (first family included) for k in the range (n=S) k ! .