Results 1  10
of
266
Models and issues in data stream systems
 IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work releva ..."
Abstract

Cited by 674 (19 self)
 Add to MetaCart
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work relevant to data stream systems and current projects in the area, the paper explores topics in stream query languages, new requirements and challenges in query processing, and algorithmic issues.
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 404 (24 self)
 Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudorandom computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [175].1
An improved data stream summary: The CountMin sketch and its applications
 J. Algorithms
, 2004
"... Abstract. We introduce a new sublinear space data structure—the CountMin Sketch — for summarizing data streams. Our sketch allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition, it can be applie ..."
Abstract

Cited by 312 (39 self)
 Add to MetaCart
Abstract. We introduce a new sublinear space data structure—the CountMin Sketch — for summarizing data streams. Our sketch allows fundamental queries in data stream summarization such as point, range, and inner product queries to be approximately answered very quickly; in addition, it can be applied to solve several important problems in data streams such as finding quantiles, frequent items, etc. The time and space bounds we show for using the CM sketch to solve these problems significantly improve those previously known — typically from 1/ε 2 to 1/ε in factor. 1
GossipBased Computation of Aggregate Information
, 2003
"... between computers, and a resulting paradigm shift from centralized to highly distributed systems. With massive scale also comes massive instability, as node and link failures become the norm rather than the exception. For such highly volatile systems, decentralized gossipbased protocols are emergin ..."
Abstract

Cited by 312 (2 self)
 Add to MetaCart
between computers, and a resulting paradigm shift from centralized to highly distributed systems. With massive scale also comes massive instability, as node and link failures become the norm rather than the exception. For such highly volatile systems, decentralized gossipbased protocols are emerging as an approach to maintaining simplicity and scalability while achieving faulttolerant information dissemination.
Finding frequent items in data streams
, 2002
"... Abstract. We present a 1pass algorithm for estimating the most frequent items in a data stream using very limited storage space. Our method relies on a novel data structure called a count sketch, which allows us to estimate the frequencies of all the items in the stream. Our algorithm achieves bett ..."
Abstract

Cited by 275 (0 self)
 Add to MetaCart
Abstract. We present a 1pass algorithm for estimating the most frequent items in a data stream using very limited storage space. Our method relies on a novel data structure called a count sketch, which allows us to estimate the frequencies of all the items in the stream. Our algorithm achieves better space bounds than the previous best known algorithms for this problem for many natural distributions on the item frequencies. In addition, our algorithm leads directly to a 2pass algorithm for the problem of estimating the items with the largest (absolute) change in frequency between two data streams. To our knowledge, this problem has not been previously studied in the literature. 1
Maintaining Stream Statistics over Sliding Windows (Extended Abstract)
, 2002
"... Mayur Datar Aristides Gionis y Piotr Indyk z Rajeev Motwani x Abstract We consider the problem of maintaining aggregates and statistics over data streams, with respect to the last N data elements seen so far. We refer to this model as the sliding window model. We consider the following basic ..."
Abstract

Cited by 242 (9 self)
 Add to MetaCart
Mayur Datar Aristides Gionis y Piotr Indyk z Rajeev Motwani x Abstract We consider the problem of maintaining aggregates and statistics over data streams, with respect to the last N data elements seen so far. We refer to this model as the sliding window model. We consider the following basic problem: Given a stream of bits, maintain a count of the number of 1's in the last N elements seen from the stream. We show that using O( 1 ffl log 2 N) bits of memory, we can estimate the number of 1's to within a factor of 1 + ffl. We also give a matching lower bound of \Omega\Gamma 1 ffl log 2 N) memory bits for any deterministic or randomized algorithms. We extend our scheme to maintain the sum of the last N positive integers. We provide matching upper and lower bounds for this more general problem as well. We apply our techniques to obtain efficient algorithms for the Lp norms (for p 2 [1; 2]) of vectors under the sliding window model. Using the algorithm for the basic counting problem, one can adapt many other techniques to work for the sliding window model, with a multiplicative overhead of O( 1 ffl log N) in memory and a 1 + ffl factor loss in accuracy. These include maintaining approximate histograms, hash tables, and statistics or aggregates such as sum and averages.
Databasefriendly Random Projections
, 2001
"... A classic result of Johnson and Lindenstrauss asserts that any set of n points in ddimensional Euclidean space can be embedded into kdimensional Euclidean space  where k is logarithmic in n and independent of d  so that all pairwise distances are maintained within an arbitrarily small factor. Al ..."
Abstract

Cited by 167 (3 self)
 Add to MetaCart
A classic result of Johnson and Lindenstrauss asserts that any set of n points in ddimensional Euclidean space can be embedded into kdimensional Euclidean space  where k is logarithmic in n and independent of d  so that all pairwise distances are maintained within an arbitrarily small factor. All known constructions of such embeddings involve projecting the n points onto a random kdimensional hyperplane. We give a novel construction of the embedding, suitable for database applications, which amounts to computing a simple aggregate over k random attribute partitions.
An Information Statistics Approach to Data Stream and Communication Complexity
, 2003
"... We present a new method for proving strong lower bounds in communication complexity. ..."
Abstract

Cited by 162 (8 self)
 Add to MetaCart
We present a new method for proving strong lower bounds in communication complexity.
Fast Monte Carlo Algorithms for Matrices II: Computing a LowRank Approximation to a Matrix
 SIAM JOURNAL ON COMPUTING
, 2004
"... ... matrix A. It is often of interest to find a lowrank approximation to A, i.e., an approximation D to the matrix A of rank not greater than a specified rank k, where k is much smaller than m and n. Methods such as the Singular Value Decomposition (SVD) may be used to find an approximation to A ..."
Abstract

Cited by 144 (17 self)
 Add to MetaCart
... matrix A. It is often of interest to find a lowrank approximation to A, i.e., an approximation D to the matrix A of rank not greater than a specified rank k, where k is much smaller than m and n. Methods such as the Singular Value Decomposition (SVD) may be used to find an approximation to A which is the best in a well defined sense. These methods require memory and time which are superlinear in m and n; for many applications in which the data sets are very large this is prohibitive. Two simple and intuitive algorithms are presented which, when given an m n matrix A, compute a description of a lowrank approximation D to A, and which are qualitatively faster than the SVD. Both algorithms have provable bounds for the error matrix A D . For any matrix X , let kXk and kXk 2 denote its Frobenius norm and its spectral norm, respectively. In the rst algorithm, c = O(1) columns of A are randomly chosen. If the m c matrix C consists of those c columns of A (after appropriate rescaling) then it is shown that from C C approximations to the top singular values and corresponding singular vectors may be computed. From the computed singular vectors a description D of the matrix A may be computed such that rank(D ) k and such that holds with high probability for both = 2; F . This algorithm may be implemented without storing the matrix A in Random Access Memory (RAM), provided it can make two passes over the matrix stored in external memory and use O(m + n) additional RAM memory. The second algorithm is similar except that it further approximates the matrix C by randomly sampling r = O(1) rows of C to form a r c matrix W . Thus, it has additional error, but it can be implemented in three passes over the matrix using only constant ...
DataStreams and Histograms
, 2001
"... Histograms have been used widely to capture data distribution, to represent the data by a small number of step functions. Dynamic programming algorithms which provide optimal construction of these histograms exist, albeit running in quadratic time and linear space. In this paper we provide linear ti ..."
Abstract

Cited by 136 (8 self)
 Add to MetaCart
Histograms have been used widely to capture data distribution, to represent the data by a small number of step functions. Dynamic programming algorithms which provide optimal construction of these histograms exist, albeit running in quadratic time and linear space. In this paper we provide linear time construction of 1 + epsilon approximation of optimal histograms, running in polylogarithmic space. Our results extend to the context of datastreams, and in fact generalize to give 1 + epsilon approximation of several problems in datastreams which require partitioning the index set into intervals. The only assumptions required are that the cost of an interval is monotonic under inclusion (larger interval has larger cost) and that the cost can be computed or approximated in small space. This exhibits a nice class of problems for which we can have near optimal datastream algorithms.