Results 1  10
of
46
Typed closure conversion
 In Proceedings of the 23th Symposium on Principles of Programming Languages (POPL
, 1996
"... The views and conclusions contained in this document are those of the authors and should not be interpreted as representing o cial policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. Any opinions, ndings, and conclusions or recommendations expresse ..."
Abstract

Cited by 154 (22 self)
 Add to MetaCart
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing o cial policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. Any opinions, ndings, and conclusions or recommendations expressed in this material are those of the We study the typing properties of closure conversion for simplytyped and polymorphiccalculi. Unlike most accounts of closure conversion, which only treat the untypedcalculus, we translate welltyped source programs to welltyped target programs. This allows later compiler phases to take advantage of types for representation analysis and tagfree garbage collection, and it facilitates correctness proofs. Our account of closure conversion for the simplytyped language takes advantage of a simple model of objects by mapping closures to existentials. Closure conversion for the polymorphic language requires additional type machinery, namely translucency in the style of Harper and Lillibridge's module calculus, to express the type of a closure.
A Security Flow Control Algorithm and Its Denotational Semantics Correctness Proof
, 1992
"... We derive a security flow control algorithm for messagebased, modular systems and prove the algorithm correct. The development is noteworthy because it is completely rigorous: the flow control algorithm is derived as an abstract interpretation of the dentotational semantics of the programming langu ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
We derive a security flow control algorithm for messagebased, modular systems and prove the algorithm correct. The development is noteworthy because it is completely rigorous: the flow control algorithm is derived as an abstract interpretation of the dentotational semantics of the programming language for the modular system, and the correctness proof is a proof by logical relations of the congruence between the denotational semantics and its abstract interpretation. Effectiveness is also addressed: we give conditions under which an abstract interpretation can be computed as a traditional iterative data flow analysis, and we prove that our security flow control algorithm satisfies the conditions. We also show that symbolic expressions (that is, data flow values that contain unknowns) can be used in a convergent, iterative analysis. An important consequence of the latter result is that the security flow control algorithm can analyze individual modules in a system for well formedness and...
Prelogical Relations
, 1999
"... this paper but which have some intriguing connections to some of our results and techniques, are [32] and [20]. We believe that the concept of prelogical relation would have a beneficial impact on the presentation and understanding of their results ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
this paper but which have some intriguing connections to some of our results and techniques, are [32] and [20]. We believe that the concept of prelogical relation would have a beneficial impact on the presentation and understanding of their results
A New Characterization of Lambda Definability
, 1993
"... . We give a new characterization of lambda definability in Henkin models using logical relations defined over ordered sets with varying arity. The advantage of this over earlier approaches by Plotkin and Statman is its simplicity and universality. Yet, decidability of lambda definability for heredit ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
. We give a new characterization of lambda definability in Henkin models using logical relations defined over ordered sets with varying arity. The advantage of this over earlier approaches by Plotkin and Statman is its simplicity and universality. Yet, decidability of lambda definability for hereditarily finite Henkin models remains an open problem. But if the variable set allowed in terms is also restricted to be finite then our techniques lead to a decision procedure. 1 Introduction An applicative structure consists of a family (A oe ) oe2T of sets, one for each type oe, together with a family (app oe;ø ) oe;ø 2T of application functions, where app oe;ø maps A oe!ø \Theta A oe into A ø . For an applicative structure to be a model of the simply typed lambda calculus (in which case we call it a Henkin model, following [4]), one requires two more conditions to hold. It must be extensional which means that the elements of A oe!ø are uniquely determined by their behavior under app oe;ø...
Abstract Interpretation of Functional Languages: From Theory to Practice
, 1991
"... Abstract interpretation is the name applied to a number of techniques for reasoning about programs by evaluating them over nonstandard domains whose elements denote properties over the standard domains. This thesis is concerned with higherorder functional languages and abstract interpretations with ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
Abstract interpretation is the name applied to a number of techniques for reasoning about programs by evaluating them over nonstandard domains whose elements denote properties over the standard domains. This thesis is concerned with higherorder functional languages and abstract interpretations with a formal semantic basis. It is known how abstract interpretation for the simply typed lambda calculus can be formalised by using binary logical relations. This has the advantage of making correctness and other semantic concerns straightforward to reason about. Its main disadvantage is that it enforces the identification of properties as sets. This thesis shows how the known formalism can be generalised by the use of ternary logical relations, and in particular how this allows abstract values to deno...
Notes on Sconing and Relators
, 1993
"... This paper describes a semantics of typed lambda calculi based on relations. The main mathematical tool is a categorytheoretic method of sconing, also called glueing or Freyd covers. Its correspondence to logical relations is also examined. 1 Introduction Many modern programming languages feature ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
This paper describes a semantics of typed lambda calculi based on relations. The main mathematical tool is a categorytheoretic method of sconing, also called glueing or Freyd covers. Its correspondence to logical relations is also examined. 1 Introduction Many modern programming languages feature rather sophisticated typing mechanisms. In particular, languages such as ML include polymorphic data types, which allow considerable programming flexibility. Several notions of polymorphism were introduced into computer science by Strachey [Str67], among them the important notion of parametric polymorphism. Strachey's intuitive definition is that a polymorphic function is parametric if it has a uniformly given algorithm in all types, that is, if the function's behavior is independent of the type at which the function is instantiated. Reynolds [Rey83] proposed a mathematical definition of parametric polymorphic functions by means of invariance with respect to certain relations induced by typ...
Full completeness of the multiplicative linear logic of chu spaces
 Proc. IEEE Logic in Computer Science 14
, 1999
"... We prove full completeness of multiplicative linear logic (MLL) without MIX under the Chu interpretation. In particular we show that the cutfree proofs of MLL theorems are in a natural bijection with the binary logical transformations of the corresponding operations on the category of Chu spaces on ..."
Abstract

Cited by 22 (8 self)
 Add to MetaCart
We prove full completeness of multiplicative linear logic (MLL) without MIX under the Chu interpretation. In particular we show that the cutfree proofs of MLL theorems are in a natural bijection with the binary logical transformations of the corresponding operations on the category of Chu spaces on a twoletter alphabet. This is the online version of the paper of the same title appearing in the LICS’99 proceedings. 1
Logical Relations for Monadic Types
, 2002
"... Logical relations and their generalizations are a fundamental tool in proving properties of lambdacalculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi's computational lambdacalculus ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
Logical relations and their generalizations are a fundamental tool in proving properties of lambdacalculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi's computational lambdacalculus. The treatment is categorical, and is based on notions of subsconing and distributivity laws for monads. Our approach has a number of interesting applications, including cases for lambdacalculi with nondeterminism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.