Results 1  10
of
389
Short group signatures
 In proceedings of CRYPTO ’04, LNCS series
, 2004
"... Abstract. We construct a short group signature scheme. Signatures in our scheme are approximately the size of a standard RSA signature with the same security. Security of our group signature is based on the Strong DiffieHellman assumption and a new assumption in bilinear groups called the Decision ..."
Abstract

Cited by 385 (19 self)
 Add to MetaCart
(Show Context)
Abstract. We construct a short group signature scheme. Signatures in our scheme are approximately the size of a standard RSA signature with the same security. Security of our group signature is based on the Strong DiffieHellman assumption and a new assumption in bilinear groups called the Decision Linear assumption. We prove security of our system, in the random oracle model, using a variant of the security definition for group signatures recently given by Bellare, Micciancio, and Warinschi. 1
Efficient identitybased encryption without random oracles
, 2005
"... We present the first efficient IdentityBased Encryption (IBE) scheme that is fully secure without random oracles. We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear DiffieHellman (BDH) problem. Additionally, we show that our techniques can be use ..."
Abstract

Cited by 343 (19 self)
 Add to MetaCart
(Show Context)
We present the first efficient IdentityBased Encryption (IBE) scheme that is fully secure without random oracles. We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear DiffieHellman (BDH) problem. Additionally, we show that our techniques can be used to build a new signature scheme that is secure under the computational DiffieHellman assumption without random oracles. 1
Hierarchical identity based encryption with constant size ciphertext
, 2005
"... ..."
(Show Context)
Signature schemes and anonymous credentials from bilinear maps
, 2004
"... We propose a new and efficient signature scheme that is provably secure in the plain model. The security of our scheme is based on a discretelogarithmbased assumption put forth by Lysyanskaya, Rivest, Sahai, and Wolf (LRSW) who also showed that it holds for generic groups and is independent of th ..."
Abstract

Cited by 234 (23 self)
 Add to MetaCart
We propose a new and efficient signature scheme that is provably secure in the plain model. The security of our scheme is based on a discretelogarithmbased assumption put forth by Lysyanskaya, Rivest, Sahai, and Wolf (LRSW) who also showed that it holds for generic groups and is independent of the decisional DiffieHellman assumption. We prove security of our scheme under the LRSW assumption for groups with bilinear maps. We then show how our scheme can be used to construct efficient anonymous credential systems as well as group signature and identity escrow schemes. To this end, we provide efficient protocols that allow one to prove in zeroknowledge the knowledge of a signature on a committed (or encrypted) message and to obtain a signature on a committed message.
Efficient SelectiveID Secure IdentityBased Encryption Without Random Oracles
 6. , SECURE IDENTITY BASED ENCRYPTION WITHOUT RANDOM ORACLES., IN FRANKLIN [20
"... We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time t ..."
Abstract

Cited by 221 (8 self)
 Add to MetaCart
(Show Context)
We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in the standard model the adversary is allowed to choose this identity adaptively. Our first secure IBE system extends to give a selective identity Hierarchical IBE secure without random oracles.
Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products
"... Abstract. Predicate encryption is a new paradigm generalizing, among other things, identitybased encryption. In a predicate encryption scheme, secret keys correspond to predicates and ciphertexts are associated with attributes; the secret key SKf corresponding to a predicate f can be used to decryp ..."
Abstract

Cited by 173 (23 self)
 Add to MetaCart
Abstract. Predicate encryption is a new paradigm generalizing, among other things, identitybased encryption. In a predicate encryption scheme, secret keys correspond to predicates and ciphertexts are associated with attributes; the secret key SKf corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f(I) = 1. Constructions of such schemes are currently known for relatively few classes of predicates. We construct such a scheme for predicates corresponding to the evaluation of inner products over ZN (for some large integer N). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, or threshold predicates (among others). Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right. 1
Group signatures with verifierlocal revocation
 CCS'04
, 2004
"... Group signatures have recently become important for enabling privacypreserving attestation in projects such as Microsoft’s ngscb effort (formerly Palladium). Revocation is critical to the security of such systems. We construct a short group signature scheme that supports VerifierLocal Revocation ( ..."
Abstract

Cited by 125 (3 self)
 Add to MetaCart
(Show Context)
Group signatures have recently become important for enabling privacypreserving attestation in projects such as Microsoft’s ngscb effort (formerly Palladium). Revocation is critical to the security of such systems. We construct a short group signature scheme that supports VerifierLocal Revocation (VLR). In this model, revocation messages are only sent to signature verifiers (as opposed to both signers and verifiers). Consequently there is no need to contact individual signers when some user is revoked. This model is appealing for systems providing attestation capabilities. Our signatures are as short as standard RSA signatures with comparable security. Security of our group signature (in the random oracle model) is based on the Strong DiffieHellman assumption and the Decision Linear assumption in bilinear groups. We give a precise model for VLR group signatures and discuss its implications.
Compact ecash
 In EUROCRYPT, volume 3494 of LNCS
, 2005
"... Abstract. This paper presents efficient offline anonymous ecash schemes where a user can withdraw a wallet containing 2 ℓ coins each of which she can spend unlinkably. Our first result is a scheme, secure under the strong RSA and the yDDHI assumptions, where the complexity of the withdrawal and s ..."
Abstract

Cited by 121 (17 self)
 Add to MetaCart
(Show Context)
Abstract. This paper presents efficient offline anonymous ecash schemes where a user can withdraw a wallet containing 2 ℓ coins each of which she can spend unlinkably. Our first result is a scheme, secure under the strong RSA and the yDDHI assumptions, where the complexity of the withdrawal and spend operations is O(ℓ + k) andtheuser’s wallet can be stored using O(ℓ + k) bits,wherek is a security parameter. The best previously known schemes require at least one of these complexities to be O(2 ℓ · k). In fact, compared to previous ecash schemes, our whole wallet of 2 ℓ coins has about the same size as one coin in these schemes. Our scheme also offers exculpability of users, that is, the bank can prove to third parties that a user has doublespent. We then extend our scheme to our second result, the first ecash scheme that provides traceable coins without a trusted third party. That is, once a user has double spent one of the 2 ℓ coins in her wallet, all her spendings of these coins can be traced. However, the price for this is that the complexity of the spending and of the withdrawal protocols becomes O(ℓ · k) and O(ℓ · k + k 2) bits, respectively, and wallets take O(ℓ · k) bitsofstorage. All our schemes are secure in the random oracle model.
Simulationsound nizk proofs for a practical language and constant size group signatures
, 2006
"... Noninteractive zeroknowledge proofs play an essential role in many cryptographic protocols. We suggest several NIZK proof systems based on prime order groups with a bilinear map. We obtain linear size proofs for relations among group elements without going through an expensive reduction to an NP ..."
Abstract

Cited by 83 (12 self)
 Add to MetaCart
(Show Context)
Noninteractive zeroknowledge proofs play an essential role in many cryptographic protocols. We suggest several NIZK proof systems based on prime order groups with a bilinear map. We obtain linear size proofs for relations among group elements without going through an expensive reduction to an NPcomplete language such as Circuit Satisfiability. Security of all our constructions is based on the decisional linear assumption. The NIZK proof system is quite general and has many applications such as digital signatures, verifiable encryption and group signatures. We focus on the latter and get the first group signature scheme satisfying the strong security definition of Bellare, Shi and Zhang [7] in the standard model without random oracles where each group signature consists only of a constant number of group elements. We also suggest a simulationsound NIZK proof of knowledge, which is much more efficient than previous constructions in the literature. Caveat: The constants are large, and therefore our schemes are not practical. Nonetheless, we find it very interesting for the first time to have NIZK proofs and group signatures that except for a constant factor are optimal without using the random oracle model to argue security.
Jammingresistant key establishment using uncoordinated frequency hopping
 in IEEE Symposium on Security and Privacy
"... We consider the following problem: how can two devices that do not share any secrets establish a shared secret key over a wireless radio channel in the presence of a communication jammer? An inherent challenge in solving this problem is that known antijamming techniques (e.g., frequency hopping or ..."
Abstract

Cited by 83 (7 self)
 Add to MetaCart
(Show Context)
We consider the following problem: how can two devices that do not share any secrets establish a shared secret key over a wireless radio channel in the presence of a communication jammer? An inherent challenge in solving this problem is that known antijamming techniques (e.g., frequency hopping or directsequence spread spectrum) which should support device communication during the key establishment require that the devices share a secret spreading key (or code) prior to the start of their communication. This requirement creates a circular dependency between antijamming spreadspectrum communication and key establishment, which has so far not been addressed. In this work, we propose an Uncoordinated Frequency Hopping (UFH) scheme that breaks this dependency and enables key establishment in the presence of a communication jammer. We perform a detailed analysis of our UFH scheme and show its feasibility, both in terms of execution time and resource requirements. 1.