Results 1  10
of
135
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 192 (6 self)
 Add to MetaCart
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.
Simultaneous analysis of Lasso and Dantzig selector
 ANNALS OF STATISTICS
, 2009
"... We show that, under a sparsity scenario, the Lasso estimator and the Dantzig selector exhibit similar behavior. For both methods, we derive, in parallel, oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ ..."
Abstract

Cited by 189 (5 self)
 Add to MetaCart
We show that, under a sparsity scenario, the Lasso estimator and the Dantzig selector exhibit similar behavior. For both methods, we derive, in parallel, oracle inequalities for the prediction risk in the general nonparametric regression model, as well as bounds on the ℓp estimation loss for 1 ≤ p ≤ 2 in the linear model when the number of variables can be much larger than the sample size.
Consistency of the group lasso and multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it ..."
Abstract

Cited by 162 (28 self)
 Add to MetaCart
We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency of group Lasso under practical assumptions, such as model misspecification. When the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert norms, the problem is usually referred to as multiple kernel learning and is commonly used for learning from heterogeneous data sources and for non linear variable selection. Using tools from functional analysis, and in particular covariance operators, we extend the consistency results to this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.
Lassotype recovery of sparse representations for highdimensional data
 ANNALS OF STATISTICS
, 2009
"... The Lasso is an attractive technique for regularization and variable selection for highdimensional data, where the number of predictor variables pn is potentially much larger than the number of samples n. However, it was recently discovered that the sparsity pattern of the Lasso estimator can only ..."
Abstract

Cited by 122 (9 self)
 Add to MetaCart
The Lasso is an attractive technique for regularization and variable selection for highdimensional data, where the number of predictor variables pn is potentially much larger than the number of samples n. However, it was recently discovered that the sparsity pattern of the Lasso estimator can only be asymptotically identical to the true sparsity pattern if the design matrix satisfies the socalled irrepresentable condition. The latter condition can easily be violated in the presence of highly correlated variables. Here we examine the behavior of the Lasso estimators if the irrepresentable condition is relaxed. Even though the Lasso cannot recover the correct sparsity pattern, we show that the estimator is still consistent in the ℓ2norm sense for fixed designs under conditions on (a) the number sn of nonzero components of the vector βn and (b) the minimal singular values of design matrices that are induced by selecting small subsets of variables. Furthermore, a rate of convergence result is obtained on the ℓ2 error with an appropriate choice of the smoothing parameter. The rate is shown to be
Group Lasso with Overlap and Graph Lasso
"... We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of covariates defined a priori, or a set of covariates which tend to be ..."
Abstract

Cited by 112 (12 self)
 Add to MetaCart
We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of covariates defined a priori, or a set of covariates which tend to be connected to each other when a graph of covariates is given. We study theoretical properties of the estimator, and illustrate its behavior on simulated and breast cancer gene expression data. 1.
Grouped and hierarchical model selection through composite absolute penalties
 Annals of Statistics
, 2006
"... Extracting useful information from highdimensional data is an important part of the focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and ..."
Abstract

Cited by 93 (4 self)
 Add to MetaCart
Extracting useful information from highdimensional data is an important part of the focus of today’s statistical research and practice. Penalized loss function minimization has been shown to be effective for this task both theoretically and empirically. With the virtues of both regularization and sparsity, the L1penalized L2 minimization method Lasso has been popular in regression models. In this paper, we combine different norms including L1 to form an intelligent penalty in order to add side information to the fitting of a regression or classification model to obtain reasonable estimates. Specifically, we introduce the Composite Absolute Penalties (CAP) family which allows the grouping and hierarchical relationships between the predictors to be expressed. CAP penalties are built by defining groups and combining the properties of norm penalties at the across group and within group levels. Grouped selection occurs for nonoverlapping groups. In that case, we give a Bayesian 1 interpretation for CAP penalties. Hierarchical variable selection is reached by defining groups with particular overlapping patterns. In the computation aspect, we propose using the BLASSO and crossvalidation to obtain CAP estimates. For a subfamily of CAP estimates involving only the L1 and L ∞ norms, we introduce the iCAP algorithm to trace the entire regularization path for the grouped selection problem. Within this subfamily, unbiased estimates of the degrees of freedom (df) are derived allowing the regularization parameter to be selected without crossvalidation. CAP is shown to improve on the predictive performance of the LASSO in a series of simulated experiments including cases with p>> n and misspecified groupings. When the complexity of a model is properly calculated, iCAP is seen to be parsimonious in the experiments. 1
Sure independence screening for ultrahigh dimensional feature space
, 2006
"... Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, ..."
Abstract

Cited by 90 (12 self)
 Add to MetaCart
Variable selection plays an important role in high dimensional statistical modeling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, estimation accuracy and computational cost are two top concerns. In a recent paper, Candes and Tao (2007) propose the Dantzig selector using L1 regularization and show that it achieves the ideal risk up to a logarithmic factor log p. Their innovative procedure and remarkable result are challenged when the dimensionality is ultra high as the factor log p can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method based on a correlation learning, called the Sure Independence Screening (SIS), to reduce dimensionality from high to a moderate scale that is below sample size. In a fairly general asymptotic framework, the SIS is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, an iterative SIS (ISIS) is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be ac
A unified framework for highdimensional analysis of Mestimators with decomposable regularizers
"... ..."
Stability selection
"... Proofs subject to correction. Not to be reproduced without permission. Contributions to the discussion must not exceed 400 words. Contributions longer than 400 words will be cut by the editor. 1 2 ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
Proofs subject to correction. Not to be reproduced without permission. Contributions to the discussion must not exceed 400 words. Contributions longer than 400 words will be cut by the editor. 1 2
Efficient Online and Batch Learning using Forward Backward Splitting
"... We describe, analyze, and experiment with a framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem ..."
Abstract

Cited by 56 (1 self)
 Add to MetaCart
We describe, analyze, and experiment with a framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This view yields a simple yet effective algorithm that can be used for batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as ℓ1. We derive concrete and very simple algorithms for minimization of loss functions with ℓ1, ℓ2, ℓ 2 2, and ℓ ∞ regularization. We also show how to construct efficient algorithms for mixednorm ℓ1/ℓq regularization. We further extend the algorithms and give efficient implementations for very highdimensional data with sparsity. We demonstrate the potential of the proposed framework in a series of experiments with synthetic and natural datasets.