Results 1  10
of
1,744
RTP: A Transport Protocol for RealTime Applications
"... Status of this Memo This document is an Internet Draft. Internet Drafts are working documents ..."
Abstract

Cited by 1908 (126 self)
 Add to MetaCart
Status of this Memo This document is an Internet Draft. Internet Drafts are working documents
PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
, 1962
"... Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr(SES> nt) depend only on the endpoints of the ranges of the smum ..."
Abstract

Cited by 1493 (2 self)
 Add to MetaCart
Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr(SES> nt) depend only on the endpoints of the ranges of the smumands and the mean, or the mean and the variance of S. These results are then used to obtain analogous inequalities for certain sums of dependent random variables such as U statistics and the sum of a random sample without replacement from a finite population.
WideArea Traffic: The Failure of Poisson Modeling
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1995
"... Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. We evaluate 24 widearea traces, investigating a number of widearea TCP arrival processes (session and con ..."
Abstract

Cited by 1409 (21 self)
 Add to MetaCart
Network arrivals are often modeled as Poisson processes for analytic simplicity, even though a number of traffic studies have shown that packet interarrivals are not exponentially distributed. We evaluate 24 widearea traces, investigating a number of widearea TCP arrival processes (session and connection arrivals, FTP data connection arrivals within FTP sessions, and TELNET packet arrivals) to determine the error introduced by modeling them using Poisson processes. We find that userinitiated TCP session arrivals, such as remotelogin and filetransfer, are wellmodeled as Poisson processes with fixed hourly rates, but that other connection arrivals deviate considerably from Poisson; that modeling TELNET packet interarrivals as exponential grievously underestimates the burstiness of TELNET traffic, but using the empirical Tcplib [Danzig et al, 1992] interarrivals preserves burstiness over many time scales; and that FTP data connection arrivals within FTP sessions come bunched into “connection bursts,” the largest of which are so large that they completely dominate FTP data traffic. Finally, we offer some results regarding how our findings relate to the possible selfsimilarity of widearea traffic.
ClassBased ngram Models of Natural Language
 Computational Linguistics
, 1992
"... We address the problem of predicting a word from previous words in a sample of text. In particular we discuss ngram models based on calsses of words. We also discuss several statistical algoirthms for assigning words to classes based on the frequency of their cooccurrence with other words. We find ..."
Abstract

Cited by 697 (5 self)
 Add to MetaCart
We address the problem of predicting a word from previous words in a sample of text. In particular we discuss ngram models based on calsses of words. We also discuss several statistical algoirthms for assigning words to classes based on the frequency of their cooccurrence with other words. We find that we are able to extract classes that have the flavor of either syntactically based groupings or semantically based groupings, depending on the nature of the underlying statistics.
SelfSimilarity Through HighVariability: Statistical Analysis of Ethernet LAN Traffic at the Source Level
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1997
"... A number of recent empirical studies of traffic measurements from a variety of working packet networks have convincingly demonstrated that actual network traffic is selfsimilar or longrange dependent in nature (i.e., bursty over a wide range of time scales)  in sharp contrast to commonly made tr ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
A number of recent empirical studies of traffic measurements from a variety of working packet networks have convincingly demonstrated that actual network traffic is selfsimilar or longrange dependent in nature (i.e., bursty over a wide range of time scales)  in sharp contrast to commonly made traffic modeling assumptions. In this paper, we provide a plausible physical explanation for the occurrence of selfsimilarity in LAN traffic. Our explanation is based on new convergence results for processes that exhibit high variability (i.e., infinite variance) and is supported by detailed statistical analyses of realtime traffic measurements from Ethernet LAN's at the level of individual sources. This paper is an extended version of [53] and differs from it in significant ways. In particular, we develop here the mathematical results concerning the superposition of strictly alternating ON/OFF sources. Our key mathematical result states that the superposition of many ON/OFF sources (also k...
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 368 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pairHMMs, or ANOVA decompositions. Uses of the method lead to open problems involving the theory of infinitely divisible positive definite functions. Fundamentals of this theory and the theory of reproducing kernel Hilbert spaces are reviewed and applied in establishing the validity of the method.
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 Journal of the ACM
, 2004
"... Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily ..."
Abstract

Cited by 315 (23 self)
 Add to MetaCart
Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent. Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 287 (6 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.