Results 1 
1 of
1
Explicit bounds for primes in residue classes
 Math. Comp
, 1996
"... Abstract. Let E/K be an abelian extension of number fields, with E ̸ = Q. Let ∆ and n denote the absolute discriminant and degree of E. Letσdenote an element of the Galois group of E/K. Weprovethefollowingtheorems, assuming the Extended Riemann Hypothesis: () (1) There is a degree1 prime p of K su ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
Abstract. Let E/K be an abelian extension of number fields, with E ̸ = Q. Let ∆ and n denote the absolute discriminant and degree of E. Letσdenote an element of the Galois group of E/K. Weprovethefollowingtheorems, assuming the Extended Riemann Hypothesis: () (1) There is a degree1 prime p of K such that p = σ, satis