Results 11  20
of
483
Thin Junction Tree Filters for Simultaneous Localization and Mapping
 In Intl. Joint Conf. on Artificial Intelligence (IJCAI
, 2003
"... Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics: while a robot navigates in an unknown environment, it must incrementally build a map of its surroundings and localize itself within that map. Traditional approaches to the problem are based upon Kalman filters, ..."
Abstract

Cited by 126 (1 self)
 Add to MetaCart
Simultaneous Localization and Mapping (SLAM) is a fundamental problem in mobile robotics: while a robot navigates in an unknown environment, it must incrementally build a map of its surroundings and localize itself within that map. Traditional approaches to the problem are based upon Kalman filters, but suffer from complexity issues: the size of the belief state and the time complexity of the filtering operation grow quadratically in the size of the map. This paper presents a filtering technique that maintains a tractable approximation of the filtered belief state as a thin junction tree. The junction tree grows under measurement and motion updates and is periodically "thinned" to remain tractable via efficient maximum likelihood projections. When applied to the SLAM problem, these thin junction tree filters have a linearspace belief state representation, and use a lineartime filtering operation. Further approximation can yield a constanttime filtering operation, at the expense of delaying the incorporation of observations into the majority of the map. Experiments on a suite of SLAM problems validate the approach.
Multiresolution markov models for signal and image processing
 Proceedings of the IEEE
, 2002
"... This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coheren ..."
Abstract

Cited by 122 (18 self)
 Add to MetaCart
This paper reviews a significant component of the rich field of statistical multiresolution (MR) modeling and processing. These MR methods have found application and permeated the literature of a widely scattered set of disciplines, and one of our principal objectives is to present a single, coherent picture of this framework. A second goal is to describe how this topic fits into the even larger field of MR methods and concepts–in particular making ties to topics such as wavelets and multigrid methods. A third is to provide several alternate viewpoints for this body of work, as the methods and concepts we describe intersect with a number of other fields. The principle focus of our presentation is the class of MR Markov processes defined on pyramidally organized trees. The attractiveness of these models stems from both the very efficient algorithms they admit and their expressive power and broad applicability. We show how a variety of methods and models relate to this framework including models for selfsimilar and 1/f processes. We also illustrate how these methods have been used in practice. We discuss the construction of MR models on trees and show how questions that arise in this context make contact with wavelets, state space modeling of time series, system and parameter identification, and hidden
Profiling internet backbone traffic: Behavior models and applications
 In ACM Sigcomm
, 2005
"... Abstract — Recent spates of cyberattacks and frequent emergence of applications affecting Internet traffic dynamics have made it imperative to develop effective techniques that can extract, and make sense of, significant communication patterns from Internet traffic data for use in network operation ..."
Abstract

Cited by 121 (12 self)
 Add to MetaCart
Abstract — Recent spates of cyberattacks and frequent emergence of applications affecting Internet traffic dynamics have made it imperative to develop effective techniques that can extract, and make sense of, significant communication patterns from Internet traffic data for use in network operations and security management. In this paper, we present a general methodology for building comprehensive behavior profiles of Internet backbone traffic in terms of communication patterns of endhosts and services. Relying on data mining and informationtheoretic techniques, the methodology consists of significant cluster extraction, automatic behavior classification and structural modelling for indepth interpretive analyses. We validate our methodology using data sets from the core of the Internet. Our results demonstrate that it indeed can identify common traffic profiles as well as anomalous behavior patterns that are of interest to network operators and security analysts. I.
Probability product kernels
 Journal of Machine Learning Research
, 2004
"... The advantages of discriminative learning algorithms and kernel machines are combined with generative modeling using a novel kernel between distributions. In the probability product kernel, data points in the input space are mapped to distributions over the sample space and a general inner product i ..."
Abstract

Cited by 104 (7 self)
 Add to MetaCart
The advantages of discriminative learning algorithms and kernel machines are combined with generative modeling using a novel kernel between distributions. In the probability product kernel, data points in the input space are mapped to distributions over the sample space and a general inner product is then evaluated as the integral of the product of pairs of distributions. The kernel is straightforward to evaluate for all exponential family models such as multinomials and Gaussians and yields interesting nonlinear kernels. Furthermore, the kernel is computable in closed form for latent distributions such as mixture models, hidden Markov models and linear dynamical systems. For intractable models, such as switching linear dynamical systems, structured meanfield approximations can be brought to bear on the kernel evaluation. For general distributions, even if an analytic expression for the kernel is not feasible, we show a straightforward sampling method to evaluate it. Thus, the kernel permits discriminative learning methods, including support vector machines, to exploit the properties, metrics and invariances of the generative models we infer from each datum. Experiments are shown using multinomial models for text, hidden Markov models for biological data sets and linear dynamical systems for time series data.
TreeBased Reparameterization Framework for Analysis of Belief Propagation and Related Algorithms
, 2001
"... We present a treebased reparameterization framework that provides a new conceptual view of a large class of algorithms for computing approximate marginals in graphs with cycles. This class includes the belief propagation or sumproduct algorithm [39, 36], as well as a rich set of variations and ext ..."
Abstract

Cited by 102 (22 self)
 Add to MetaCart
We present a treebased reparameterization framework that provides a new conceptual view of a large class of algorithms for computing approximate marginals in graphs with cycles. This class includes the belief propagation or sumproduct algorithm [39, 36], as well as a rich set of variations and extensions of belief propagation. Algorithms in this class can be formulated as a sequence of reparameterization updates, each of which entails refactorizing a portion of the distribution corresponding to an acyclic subgraph (i.e., a tree). The ultimate goal is to obtain an alternative but equivalent factorization using functions that represent (exact or approximate) marginal distributions on cliques of the graph. Our framework highlights an important property of BP and the entire class of reparameterization algorithms: the distribution on the full graph is not changed. The perspective of treebased updates gives rise to a simple and intuitive characterization of the fixed points in terms of tree consistency. We develop interpretations of these results in terms of information geometry. The invariance of the distribution, in conjunction with the fixed point characterization, enables us to derive an exact relation between the exact marginals on an arbitrary graph with cycles, and the approximations provided by belief propagation, and more broadly, any algorithm that minimizes the Bethe free energy. We also develop bounds on this approximation error, which illuminate the conditions that govern their accuracy. Finally, we show how the reparameterization perspective extends naturally to more structured approximations (e.g., Kikuchi and variants [52, 37]) that operate over higher order cliques.
Machine recognition of human activities: A survey
, 2008
"... The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as contentbased video annotation and retrieval, highlight extraction and video summarization require recognition of the a ..."
Abstract

Cited by 97 (0 self)
 Add to MetaCart
The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as contentbased video annotation and retrieval, highlight extraction and video summarization require recognition of the activities occurring in the video. The analysis of human activities in videos is an area with increasingly important consequences from security and surveillance to entertainment and personal archiving. Several challenges at various levels of processing—robustness against errors in lowlevel processing, view and rateinvariant representations at midlevel processing and semantic representation of human activities at higher level processing—make this problem hard to solve. In this review paper, we present a comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications. We discuss the problem at two major levels of complexity: 1) “actions ” and 2) “activities. ” “Actions ” are characterized by simple motion patterns typically executed by a single human. “Activities ” are more complex and involve coordinated actions among a small number of humans. We will discuss several approaches and classify them according to their ability to handle varying degrees of complexity as interpreted above. We begin with a discussion of approaches to model the simplest of action classes known as atomic or primitive actions that do not require sophisticated dynamical modeling. Then, methods to model actions with more complex dynamics are discussed. The discussion then leads naturally to methods for higher level representation of complex activities.
Selectivity Estimation using Probabilistic Models
, 2001
"... Estimating the result size of complex queries that involve selection on multiple attributes and the join of several relations is a difficult but fundamental task in database query processing. It arises in costbased query optimization, query profiling, and approximate query answering. In this paper, ..."
Abstract

Cited by 80 (3 self)
 Add to MetaCart
Estimating the result size of complex queries that involve selection on multiple attributes and the join of several relations is a difficult but fundamental task in database query processing. It arises in costbased query optimization, query profiling, and approximate query answering. In this paper, we show how probabilistic graphical models can be effectively used for this task as an accurate and compact approximation of the joint frequency distribution of multiple attributes across multiple relations. Probabilistic Relational Models (PRMs) are a recent development that extends graphical statistical models such as Bayesian Networks to relational domains. They represent the statistical dependencies between attributes within a table, and between attributes across foreignkey joins. We provide an efficient algorithm for constructing a PRM from a database, and show how a PRM can be used to compute selectivity estimates for a broad class of queries. One of the major contributions of this work is a unified framework for the estimation of queries involving both select and foreignkey join operations. Furthermore, our approach is not limited to answering a small set of predetermined queries; a single model can be used to effectively estimate the sizes of a wide collection of potential queries across multiple tables. We present results for our approach on several realworld databases. For both singletable multiattribute queries and a general class of selectjoin queries, our approach produces more accurate estimates than standard approaches to selectivity estimation, using comparable space and time.
Implementing approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations: A manual for the inlaprogram
, 2008
"... Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatiotemp ..."
Abstract

Cited by 79 (16 self)
 Add to MetaCart
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatiotemporal models, logGaussian Coxprocesses, geostatistical and geoadditive models. In this paper we consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with nonGaussian response variables. The posterior marginals are not available in closed form due to the nonGaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, both in terms of convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations
Topics in semantic representation
 Psychological Review
, 2007
"... Accounts of language processing have suggested that it requires retrieving concepts from memory in response to an ongoing stream of information. This can be facilitated by inferring the gist of a sentence, conversation, or document, and using that computational problem underlying the extraction and ..."
Abstract

Cited by 78 (10 self)
 Add to MetaCart
Accounts of language processing have suggested that it requires retrieving concepts from memory in response to an ongoing stream of information. This can be facilitated by inferring the gist of a sentence, conversation, or document, and using that computational problem underlying the extraction and use of gist, formulating this problem as a rational statistical inference. This leads us to a novel approach to semantic representation in which word meanings are represented in terms of a set of probabilistic topics. The topic model performs well in predicting word association and the effects of semantic association and ambiguity on a variety of language processing and memory tasks. It also provides a foundation for developing more richly structured statistical models of language, as the generative process assumed in the topic model can easily be extended to incorporate other kinds of semantic and syntactic structure. Many aspects of perception and cognition can be understood by considering the computational problem that is addressed by a particular human capacity (Andersion, 1990; Marr, 1982). Perceptual capacities such as identifying shape from shading (Freeman, 1994), motion perception
Collective Information Extraction with Relational Markov Networks
, 2004
"... Most information extraction (IE) systems treat separate potential extractions as independent. However, in many cases, considering inuences between dierent potential extractions could improve overall accuracy. Statistical methods based on undirected graphical models, such as conditional random elds ..."
Abstract

Cited by 72 (4 self)
 Add to MetaCart
Most information extraction (IE) systems treat separate potential extractions as independent. However, in many cases, considering inuences between dierent potential extractions could improve overall accuracy. Statistical methods based on undirected graphical models, such as conditional random elds (CRFs), have been shown to be an eective approach to learning accurate IE systems. We present a new IE method that employs Relational Markov Networks (a generalization of CRFs), which can represent arbitrary dependencies between extractions. This allows for \collective information extraction" that exploits the mutual in uence between possible extractions. Experiments on learning to extract protein names from biomedical text demonstrate the advantages of this approach.