Results 1 
2 of
2
Twisted differential nonabelian cohomology Twisted (n−1)brane nbundles and their ChernSimons (n+1)bundles with characteristic (n + 2)classes
, 2008
"... We introduce nonabelian differential cohomology classifying ∞bundles with smooth connection and their higher gerbes of sections, generalizing [138]. We construct classes of examples of these from lifts, twisted lifts and obstructions to lifts through shifted central extensions of groups by the shif ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
We introduce nonabelian differential cohomology classifying ∞bundles with smooth connection and their higher gerbes of sections, generalizing [138]. We construct classes of examples of these from lifts, twisted lifts and obstructions to lifts through shifted central extensions of groups by the shifted abelian ngroup B n−1 U(1). Notable examples are String 2bundles [9] and Fivebrane 6bundles [133]. The obstructions to lifting ordinary principal bundles to these, hence in particular the obstructions to lifting Spinstructures to Stringstructures [13] and further to Fivebranestructures [133, 52], are abelian ChernSimons 3 and 7bundles with characteristic class the first and second fractional Pontryagin class, whose abelian cocycles have been constructed explicitly by Brylinski and McLaughlin [35, 36]. We realize their construction as an abelian component of obstruction theory in nonabelian cohomology by ∞Lieintegrating the L∞algebraic data in [132]. As a result, even if the lift fails, we obtain twisted String 2 and twisted Fivebrane 6bundles classified in twisted nonabelian (differential) cohomology and generalizing the twisted bundles appearing in twisted Ktheory. We explain the GreenSchwarz mechanism in heterotic string theory in terms of twisted String 2bundles and its magnetic dual version – according to [133] – in terms of twisted Fivebrane 6bundles. We close by transgressing differential cocycles to mapping
Coherence in monoidal track categories
"... Abstract – We introduce homotopical methods based on rewriting on higherdimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and use rewriting ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract – We introduce homotopical methods based on rewriting on higherdimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and use rewriting methods on polygraphs to solve it. The setting is generalized to more general coherence problems, seen as 3dimensional word problems in a track category. We prove general results that, in the case of braided monoidal categories, yield the coherence theorem for braided monoidal categories.