Results 1 
3 of
3
Polytypic compact printing and parsing
 In Doaitse Swierstra, editor, ESOP’99, volume 1576 of LNCS
, 1999
"... Abstract. A generic compact printer and a corresponding parser are constructed. These programs transform values of any regular datatype to and from a bit stream. The algorithms are constructed along with a proof that printing followed by parsing is the identity. Since the binary representation is ve ..."
Abstract

Cited by 22 (7 self)
 Add to MetaCart
Abstract. A generic compact printer and a corresponding parser are constructed. These programs transform values of any regular datatype to and from a bit stream. The algorithms are constructed along with a proof that printing followed by parsing is the identity. Since the binary representation is very compact, the printer can be used for compressing data possibly supplemented with some standard algorithm for compressing bit streams. The compact printer and the parser are described in the polytypic Haskell extension PolyP. 1
Algebra of logic programming
 International Conference on Logic Programming
, 1999
"... At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating th ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating the expressiveness of these two models of computation. In this thesis we work towards an integration of the methodology from the two research areas. To this end, we propose an algebraic approach to reasoning about logic programs, corresponding to the approach taken in functional programming. In the first half of the thesis we develop and discuss a framework which forms the basis for our algebraic analysis and transformation methods. The framework is based on an embedding of definite logic programs into lazy functional programs in Haskell, such that both the declarative and the operational semantics of the logic programs are preserved. In spite of its conciseness and apparent simplicity, the embedding proves to have many interesting properties and it gives rise to an algebraic semantics of logic programming. It also allows us to reason about logic programs in a simple calculational style, using rewriting and the algebraic laws of combinators. In the embedding, the meaning of a logic program arises compositionally from the meaning of its constituent subprograms and the combinators that connect them. In the second half of the thesis we explore applications of the embedding to the algebraic transformation of logic programs. A series of examples covers simple program derivations, where our techniques simplify some of the current techniques. Another set of examples explores applications of the more advanced program development techniques from the Algebra of Programming by Bird and de Moor [18], where we expand the techniques currently available for logic program derivation and optimisation. To my parents, Sandor and Erzsebet. And the end of all our exploring Will be to arrive where we started And know the place for the first time.
Embedding prolog in haskell
 Department of Computer Science, University of Utrecht
, 1999
"... The distinctive merit of the declarative reading of logic programs is the validity ofallthelaws of reasoning supplied by the predicate calculus with equality. Surprisingly many of these laws are still valid for the procedural reading � they can therefore be used safely for algebraic manipulation, pr ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
The distinctive merit of the declarative reading of logic programs is the validity ofallthelaws of reasoning supplied by the predicate calculus with equality. Surprisingly many of these laws are still valid for the procedural reading � they can therefore be used safely for algebraic manipulation, program transformation and optimisation of executable logic programs. This paper lists a number of common laws, and proves their validity for the standard (depth rst search) procedural reading of Prolog. They also hold for alternative search strategies, e.g. breadth rst search. Our proofs of the laws are based on the standard algebra of functional programming, after the strategies have been given a rather simple implementation in Haskell. 1