Results 1 
3 of
3
What is a Random Sequence
 The Mathematical Association of America, Monthly
, 2002
"... there laws of randomness? These old and deep philosophical questions still stir controversy today. Some scholars have suggested that our difficulty in dealing with notions of randomness could be gauged by the comparatively late development of probability theory, which had a ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
there laws of randomness? These old and deep philosophical questions still stir controversy today. Some scholars have suggested that our difficulty in dealing with notions of randomness could be gauged by the comparatively late development of probability theory, which had a
Symbol Grounding in Computational Systems: A Paradox of Intentions
"... Abstract. The paper presents a paradoxical feature of computational systems that suggests that computationalism cannot explain symbol grounding. If the mind is a digital computer, as computationalism claims, then it can be computing either over meaningful symbols or over meaningless symbols. If it i ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. The paper presents a paradoxical feature of computational systems that suggests that computationalism cannot explain symbol grounding. If the mind is a digital computer, as computationalism claims, then it can be computing either over meaningful symbols or over meaningless symbols. If it is computing over meaningful symbols its functioning presupposes the existence of meaningful symbols in the system, i.e. it implies semantic nativism. If the mind is computing over meaningless symbols, no intentional cognitive processes are available prior to symbol grounding; therefore no symbol grounding could take place since any such process presupposes intentional processes. So, whether computing in the mind is over meaningless or over meaningful symbols, computationalism implies semantic nativism.
Article Not Finitude but Countability: Implications of Imagination Positing Countability in Time
"... Abstract: In this article, we will show how imagination and time are two sides of the same coin. To explain this, we require that imagination posits countability of alternatives. A countable set of alternatives can be sequenced on a timeline, for example the thinking human’s past, or it can be expre ..."
Abstract
 Add to MetaCart
Abstract: In this article, we will show how imagination and time are two sides of the same coin. To explain this, we require that imagination posits countability of alternatives. A countable set of alternatives can be sequenced on a timeline, for example the thinking human’s past, or it can be expressed as a countably infinite set of cycles such as a Fourier transform gives us. At the heart of our discussion is a technical argument arising from Cantor’s diagonal method. A conclusion that we arrive at is that the finite/infinite opposition, in particular in philosophy, is confusing at best. Instead we propose a countable/uncountable opposition as being a far clearer basis for understanding human imagination and as a basis for the philosophy of time. We discuss Kant, Heidegger and Gödel in this light. We draw out implications for “machine imagination, ” and we propose a new basis for understanding human creativity and imagination.