Results 1  10
of
63
SPECWARE: Formal Support for Composing Software
 In Mathematics of Program Construction
, 1995
"... Specware supports the systematic construction of formal specifications and their stepwise refinement into programs. The fundamental operations in Specware are that of composing specifications (via colimits), the corresponding refinement by composing refinements (via sheaves), and the generation of p ..."
Abstract

Cited by 83 (0 self)
 Add to MetaCart
Specware supports the systematic construction of formal specifications and their stepwise refinement into programs. The fundamental operations in Specware are that of composing specifications (via colimits), the corresponding refinement by composing refinements (via sheaves), and the generation of programs by composing code modules (via colimits). The concept of diagram refinement is introduced as a practical realization of composing refinements via sheaves. Sequential and parallel composition of refinements satisfy a distributive law which is a generalization of similar compatibility laws in the literature. Specware is based on a rich categorical framework with a small set of orthogonal concepts. We believe that this formal basis will enable the scaling to systemlevel software construction.
SOME GEOMETRIC PERSPECTIVES IN CONCURRENCY THEORY
 HOMOLOGY, HOMOTOPY AND APPLICATIONS, VOL.5(2), 2003, PP.95–136
, 2003
"... Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on ..."
Abstract

Cited by 57 (4 self)
 Add to MetaCart
Concurrency, i.e., the domain in computer science which deals with parallel (asynchronous) computations, has very strong links with algebraic topology; this is what we are developing in this paper, giving a survey of “geometric” models for concurrency. We show that the properties we want to prove on concurrent systems are stable under some form of deformation, which is almost homotopy. In fact, as the “direction ” of time matters, we have to allow deformation only as long as we do not reverse the direction of time. This calls for a new homotopy theory: “directed ” or dihomotopy. We develop some of the geometric intuition behind this theory and give some hints about the algebraic objects one can associate with it (in particular homology groups). For some historic as well as for some deeper reasons, the theory is at a stage where there is a nice blend between cubical, ωcategorical and topological techniques.
Quillen Closed Model Structures for Sheaves
, 1995
"... In this chapter I give a general procedure of transferring closed model structures along adjoint functor pairs. As applications I derive from a global closed model structure on the category of simplicial sheaves closed model structures on the category of sheaves of 2groupoids, the category of bisim ..."
Abstract

Cited by 26 (0 self)
 Add to MetaCart
(Show Context)
In this chapter I give a general procedure of transferring closed model structures along adjoint functor pairs. As applications I derive from a global closed model structure on the category of simplicial sheaves closed model structures on the category of sheaves of 2groupoids, the category of bisimplicial sheaves and the category of simplicial sheaves of groupoids. Subsequently, the homotopy theories of these categories are related to the homotopy theory of simplicial sheaves. 1 Introduction There are two ways of trying to generalize the well known closed model structure on the category of simplicial sets to the category of simplicial objects in a Grothendieck topos. One way is to concentrate on the local aspect, and to use the Kanfibrations as a starting point. In [14] Heller showed that for simplicial presheaves there is a local (there called right) closed model structure. In [2] K. Brown showed that for a topological space X the category of "locally fibrant" sheaves of spectra on ...
Homotopy fixed points for LK(n)(En ∧X) using the continuous action
 J. Pure Appl. Algebra
"... Abstract. Let K(n) be the nth Morava Ktheory spectrum. Let En be the LubinTate spectrum, which plays a central role in understanding LK(n)(S 0), the K(n)local sphere. For any spectrum X, dene E_(X) to be the spectrum LK(n)(En ^ X). Let G be a closed subgroup of the pronite group Gn, the group of ..."
Abstract

Cited by 22 (15 self)
 Add to MetaCart
Abstract. Let K(n) be the nth Morava Ktheory spectrum. Let En be the LubinTate spectrum, which plays a central role in understanding LK(n)(S 0), the K(n)local sphere. For any spectrum X, dene E_(X) to be the spectrum LK(n)(En ^ X). Let G be a closed subgroup of the pronite group Gn, the group of ring spectrum automorphisms of En in the stable homotopy category. We show that E_(X) is a continuous Gspectrum, with homotopy xed point spectrum (E_(X))hG. Also, we construct a descent spectral sequence with abutment ((E_(X))hG): 1.
Topical Categories of Domains
, 1997
"... this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2 ..."
Abstract

Cited by 19 (18 self)
 Add to MetaCart
this paper are algebraic dcpos, and many of the points discussed here will be needed later in the special case. 2 They provide a simple example to illustrate the "Display categories" in Section 3.2
A universal characterization of the closed euclidean interval (Extended Abstract)
 PROC. OF 16TH ANN. IEEE SYMP. ON LOGIC IN COMPUTER SCIENCE, LICS'01
, 2001
"... We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basi ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basic arithmetic operations and to verify equations between them. We test the notion in categories of interest. In the
Homotopy fixed points for L K(n)(En∧ X) using the continuous action
 J. Pure Appl. Algebra
"... Abstract. Let G be a closed subgroup of Gn, the extended Morava stabilizer group. Let En be the LubinTate spectrum, X an arbitrary spectrum with trivial Gaction, and let ˆ L = L K(n). We prove that ˆ L(En ∧ X) is a continuous Gspectrum with homotopy fixed point spectrum ( ˆ L(En ∧ X)) hG, define ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Abstract. Let G be a closed subgroup of Gn, the extended Morava stabilizer group. Let En be the LubinTate spectrum, X an arbitrary spectrum with trivial Gaction, and let ˆ L = L K(n). We prove that ˆ L(En ∧ X) is a continuous Gspectrum with homotopy fixed point spectrum ( ˆ L(En ∧ X)) hG, defined with respect to the continuous action. Also, we construct a descent spectral sequence whose abutment is π∗( ( ˆ L(En∧X)) hG). We show that the homotopy fixed points of ˆ L(En ∧ X) come from the K(n)localization of the homotopy fixed points of the spectrum (Fn ∧ X). 1.
Higher fundamental functors for simplicial sets, Cahiers Topologie Géom
 Diff. Catég
"... Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how this homotopy theory can be extended to the topos itself,!Smp. As a crucial advantage, the fundamental groupoid Π1:!Smp = Gpd is left adjoint to a natural functor M1: Gpd =!Smp, the symmetric nerve of a groupoid, and preserves all colimits – a strong van Kampen property. Similar results hold in all higher dimensions. Analogously, a notion of (nonreversible) directed homotopy can be developed in the ordinary simplicial topos Smp, with applications to image analysis as in [G3]. We have now a homotopy ncategory functor ↑Πn: Smp = nCat, left adjoint to a nerve Nn = nCat(↑Πn(∆[n]), –). This construction can be applied to various presheaf categories; the basic requirements seem to be: finite products of representables are finitely presentable and there is a representable 'standard interval'.
The LubinTate spectrum and its homotopy fixed point spectra
 NORTHWESTERN UNIVERSITY
, 2003
"... ..."
Model structures on the category of small double categories, Algebraic and Geometric Topology 8
, 2008
"... Abstract. In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofibrant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves