Results 1  10
of
63
InductiveDataType Systems
, 2002
"... In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schema", whichgenera ..."
Abstract

Cited by 755 (22 self)
 Add to MetaCart
In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the leI two authors presented a combined lmbined made of a (strongl normal3zG9 alrmal rewrite system and a typed #calA#Ik enriched by patternmatching definitions folnitio a certain format,calat the "General Schema", whichgeneral39I theusual recursor definitions fornatural numbers and simil9 "basic inductive types". This combined lmbined was shown to bestrongl normalIk39f The purpose of this paper is toreformul33 and extend theGeneral Schema in order to make it easil extensibl3 to capture a more general cler of inductive types, cals, "strictly positive", and to ease the strong normalgAg9Ik proof of theresulGGg system. Thisresul provides a computation model for the combination of anal"DAfGI specification language based on abstract data types and of astrongl typed functional language with strictly positive inductive types.
Term Rewriting Systems
, 1992
"... Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Re ..."
Abstract

Cited by 567 (16 self)
 Add to MetaCart
Term Rewriting Systems play an important role in various areas, such as abstract data type specifications, implementations of functional programming languages and automated deduction. In this chapter we introduce several of the basic comcepts and facts for TRS's. Specifically, we discuss Abstract Reduction Systems
Termination of Term Rewriting Using Dependency Pairs
 Comput. Sci
, 2000
"... We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subter ..."
Abstract

Cited by 210 (47 self)
 Add to MetaCart
We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left and righthand sides of rewrite rules, but introduce the notion of dependency pairs to compare lefthand sides with special subterms of the righthand sides. This results in a technique which allows to apply existing methods for automated termination proofs to term rewriting systems where they failed up to now. In particular, there are numerous term rewriting systems where a direct termination proof with simplification orderings is not possible, but in combination with our technique, wellknown simplification orderings (such as the recursive path ordering, polynomial orderings, or the KnuthBendix ordering) can now be used to prove termination automatically. Unlike previous methods, our technique for proving innermost termination automatically can also be applied to prove innermost termination of term rewriting systems that are not terminating. Moreover, as innermost termination implies termination for certain classes of term rewriting systems, this technique can also be used for termination proofs of such systems.
Equations and rewrite rules: a survey
 In Formal Language Theory: Perspectives and Open Problems
, 1980
"... bY ..."
Natural termination
 Theoretical Computer Science
"... Abstract. We generalize the various path orderings and the conditions under which they work, and describe an implementation of this general ordering. We look at methods for proving termination of orthogonal systems and give a new solution to a problem of Zantema's. 1 ..."
Abstract

Cited by 83 (11 self)
 Add to MetaCart
Abstract. We generalize the various path orderings and the conditions under which they work, and describe an implementation of this general ordering. We look at methods for proving termination of orthogonal systems and give a new solution to a problem of Zantema's. 1
Decision Problems For SemiThue Systems With A Few Rules
, 1996
"... For several decision problems about semiThue systems, we try to locate the frontier between the decidable and the undecidable from the point of view of the number of rules. We show that the the Termination Problem, the UTermination Problem, the Accessibility Problem and the CommonDescendant Probl ..."
Abstract

Cited by 56 (0 self)
 Add to MetaCart
For several decision problems about semiThue systems, we try to locate the frontier between the decidable and the undecidable from the point of view of the number of rules. We show that the the Termination Problem, the UTermination Problem, the Accessibility Problem and the CommonDescendant Problem are undecidable for 3 rules STS. As a corollary we obtain the undecidability of the PostCorrespondence Problem for 7 rules.
Generalized Sufficient Conditions for Modular Termination of Rewriting
 IN ENGINEERING, COMMUNICATION AND COMPUTING
, 1992
"... Modular properties of term rewriting systems, i.e. properties which are preserved under disjoint unions, have attracted an increasing attention within the last few years. Whereas confluence is modular this does not hold true in general for termination. By means of a careful analysis of potential cou ..."
Abstract

Cited by 49 (7 self)
 Add to MetaCart
Modular properties of term rewriting systems, i.e. properties which are preserved under disjoint unions, have attracted an increasing attention within the last few years. Whereas confluence is modular this does not hold true in general for termination. By means of a careful analysis of potential counterexamples we prove the following abstract result. Whenever the disjoint union R1 \Phi R2 of two (finitely branching) terminating term rewriting systems R1 , R2 is nonterminating, then one of the systems, say R1 , enjoys an interesting (undecidable) property, namely it is not termination preserving under nondeterministic collapses, i.e. R1 \Phi fG(x; y) ! x; G(x; y) ! yg is nonterminating, and the other system R2 is collapsing, i.e. contains a rule with a variable right hand side. This result generalizes known sufficient criteria for modular termination of rewriting and provides the basis for a couple of derived modularity results. Furthermore, we prove that the minimal rank of pote...
Generating Polynomial Orderings for Termination Proofs
 In Proc. 6th RTA, LNCS 914
, 1995
"... Most systems for the automation of termination proofs using polynomial orderings are only semiautomatic, i.e. the "right" polynomial ordering has to be given by the user. We show that a variation of Lankford's partial derivative technique leads to an easier and slightly more powerful method than mo ..."
Abstract

Cited by 46 (22 self)
 Add to MetaCart
Most systems for the automation of termination proofs using polynomial orderings are only semiautomatic, i.e. the "right" polynomial ordering has to be given by the user. We show that a variation of Lankford's partial derivative technique leads to an easier and slightly more powerful method than most other semiautomatic approaches. Based on this technique we develop a method for the automated synthesis of a suited polynomial ordering.
Shostak's Congruence Closure as Completion
 Proceedings of the 8th International Conference on Rewriting Techniques and Applications, volume 1232 of Lecture Notes in Computer Science
, 1997
"... . Shostak's congruence closure algorithm is demystified, using the framework of ground completion on (possibly nonterminating, nonreduced) rewrite rules. In particular, the canonical rewriting relation induced by the algorithm on ground terms by a given set of ground equations is precisely cons ..."
Abstract

Cited by 33 (3 self)
 Add to MetaCart
. Shostak's congruence closure algorithm is demystified, using the framework of ground completion on (possibly nonterminating, nonreduced) rewrite rules. In particular, the canonical rewriting relation induced by the algorithm on ground terms by a given set of ground equations is precisely constructed. The main idea is to extend the signature of the original input to include new constant symbols for nonconstant subterms appearing in the input. A byproduct of this approach is (i) an algorithm for associating a confluent rewriting system with possibly nonterminating ground rewrite rules, and (ii) a new quadratic algorithm for computing a canonical rewriting system from ground equations. 1 Introduction Equality reasoning has been found critical in many applications including compiler optimization, functional languages, and reasoning about data bases, most importantly, reasoning about different aspects of software and hardware  circuits, programs and specifications. Signific...