Results 1 - 10
of
175
Context-Based Vision System for Place and Object Recognition
, 2003
"... While navigating in an environment, a vision system has' to be able to recognize where it is' and what the main objects' in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is' to identify familiar locations' (e ..."
Abstract
-
Cited by 317 (9 self)
- Add to MetaCart
(Show Context)
While navigating in an environment, a vision system has' to be able to recognize where it is' and what the main objects' in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is' to identify familiar locations' (e.g., office 610, conference room 941, Main Street), to categorize new environments' (office, corridor, street) and to use that information to provide contextualpriors for object recognition (e.g., table, chair, car, computeD. We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors' that simplify object recognition. We have trained the system to recognize over 60 locations (indoors' and outdoors') and to suggest the presence and locations' of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user. 1This work was sponsored by the Air Force under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Government.
Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search
- PSYCHOLOGICAL REVIEW
, 2006
"... Many experiments have shown that the human visual system makes extensive use of contextual information for facilitating object search in natural scenes. However, the question of how to formally model contextual influences is still open. On the basis of a Bayesian framework, the authors present an or ..."
Abstract
-
Cited by 258 (17 self)
- Add to MetaCart
Many experiments have shown that the human visual system makes extensive use of contextual information for facilitating object search in natural scenes. However, the question of how to formally model contextual influences is still open. On the basis of a Bayesian framework, the authors present an original approach of attentional guidance by global scene context. The model comprises 2 parallel pathways; one pathway computes local features (saliency) and the other computes global (scenecentered) features. The contextual guidance model of attention combines bottom-up saliency, scene context, and top-down mechanisms at an early stage of visual processing and predicts the image regions likely to be fixated by human observers performing natural search tasks in real-world scenes.
Image Parsing: Unifying Segmentation, Detection, and Recognition
, 2005
"... In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural lang ..."
Abstract
-
Cited by 233 (22 self)
- Add to MetaCart
In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and re-configures it dynamically using a set of reversible Markov chain jumps. This computational framework integrates two popular inference approaches -- generative (top-down) methods and discriminative (bottom-up) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottom-up tests/filters.
Discriminative models for multi-class object layout
"... Many state-of-the-art approaches for object recognition reduce the problem to a 0-1 classification task. Such reductions allow one to leverage sophisticated classifiers for learning. These models are typically trained independently for each class using positive and negative examples cropped from ima ..."
Abstract
-
Cited by 197 (6 self)
- Add to MetaCart
(Show Context)
Many state-of-the-art approaches for object recognition reduce the problem to a 0-1 classification task. Such reductions allow one to leverage sophisticated classifiers for learning. These models are typically trained independently for each class using positive and negative examples cropped from images. At test-time, various post-processing heuristics such as non-maxima suppression (NMS) are required to reconcile multiple detections within and between different classes for each image. Though crucial to good performance on benchmarks, this post-processing is usually defined heuristically. We introduce a unified model for multi-class object recognition that casts the problem as a structured prediction task. Rather than predicting a binary label for each image
Contextual models for object detection using boosted random fields
- In NIPS
, 2004
"... We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned ..."
Abstract
-
Cited by 195 (12 self)
- Add to MetaCart
(Show Context)
We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes. 1.
Image Categorization by Learning and Reasoning with Regions
- Journal of Machine Learning Research
, 2004
"... Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image cat ..."
Abstract
-
Cited by 195 (11 self)
- Add to MetaCart
Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image categorization. Images are viewed as bags, each of which contains a number of instances corresponding to regions obtained from image segmentation. The standard MIL problem assumes that a bag is labeled positive if at least one of its instances is positive; otherwise, the bag is negative.
Make3D: Learning 3D Scene Structure from a Single Still Image
"... We consider the problem of estimating detailed 3-d structure from a single still image of an unstructured environment. Our goal is to create 3-d models which are both quantitatively accurate as well as visually pleasing. For each small homogeneous patch in the image, we use a Markov Random Field (M ..."
Abstract
-
Cited by 158 (19 self)
- Add to MetaCart
We consider the problem of estimating detailed 3-d structure from a single still image of an unstructured environment. Our goal is to create 3-d models which are both quantitatively accurate as well as visually pleasing. For each small homogeneous patch in the image, we use a Markov Random Field (MRF) to infer a set of “plane parameters” that capture both the 3-d location and 3-d orientation of the patch. The MRF, trained via supervised learning, models both image depth cues as well as the relationships between different parts of the image. Other than assuming that the environment is made up of a number of small planes, our model makes no explicit assumptions about the structure of the scene; this enables the algorithm to capture much more detailed 3-d structure than does prior art, and also give a much richer experience in the 3-d flythroughs created using image-based rendering, even for scenes with significant non-vertical structure. Using this approach, we have created qualitatively correct 3-d models for 64.9 % of 588 images downloaded from the internet. We have also extended our model to produce large scale 3d models from a few images.
Learning depth from single monocular images
- In NIPS 18
, 2005
"... We consider the task of depth estimation from a single monocular image. We take a supervised learning approach to this problem, in which we begin by collecting a training set of monocular images (of unstructured outdoor environments which include forests, trees, buildings, etc.) and their correspond ..."
Abstract
-
Cited by 132 (34 self)
- Add to MetaCart
(Show Context)
We consider the task of depth estimation from a single monocular image. We take a supervised learning approach to this problem, in which we begin by collecting a training set of monocular images (of unstructured outdoor environments which include forests, trees, buildings, etc.) and their corresponding ground-truth depthmaps. Then, we apply supervised learning to predict the depthmap as a function of the image. Depth estimation is a challenging problem, since local features alone are insufficient to estimate depth at a point, and one needs to consider the global context of the image. Our model uses a discriminatively-trained Markov Random Field (MRF) that incorporates multiscale local- and global-image features, and models both depths at individual points as well as the relation between depths at different points. We show that, even on unstructured scenes, our algorithm is frequently able to recover fairly accurate depthmaps. 1
Learning Spatial Context: Using Stuff to Find Things
"... Abstract. The sliding window approach of detecting rigid objects (such as cars) is predicated on the belief that the object can be identified from the appearance in a small region around the object. Other types of objects of amorphous spatial extent (e.g., trees, sky), however, are more naturally cl ..."
Abstract
-
Cited by 131 (1 self)
- Add to MetaCart
(Show Context)
Abstract. The sliding window approach of detecting rigid objects (such as cars) is predicated on the belief that the object can be identified from the appearance in a small region around the object. Other types of objects of amorphous spatial extent (e.g., trees, sky), however, are more naturally classified based on texture or color. In this paper, we seek to combine recognition of these two types of objects into a system that leverages “context ” toward improving detection. In particular, we cluster image regions based on their ability to serve as context for the detection of objects. Rather than providing an explicit training set with region labels, our method automatically groups regions based on both their appearance and their relationships to the detections in the image. We show that our things and stuff (TAS) context model produces meaningful clusters that are readily interpretable, and helps improve our detection ability over state-of-the-art detectors. We also present a method for learning the active set of relationships for a particular dataset. We present results on object detection in images from the PASCAL VOC 2005/2006 datasets and on the task of overhead car detection in satellite images, demonstrating significant improvements over state-of-the-art detectors. 1