Results 1 
1 of
1
Combining generic judgments with recursive definitions
 in "23th Symp. on Logic in Computer Science", F. PFENNING (editor), IEEE Computer Society Press, 2008, p. 33–44, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf US
"... Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow di ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow direct, logicbased reasoning about such descriptions: the treatment of atomic judgments as fixed points (recursive definitions) and an encoding of binding constructs via generic judgments. However, the logics encompassing these two features have thus far treated them orthogonally. In particular, they have not contained the ability to form definitions of objectlogic properties that themselves depend on an intrinsic treatment of binding. We propose a new and simple integration of these features within an intuitionistic logic enhanced with induction over natural numbers and we show that the resulting logic is consistent. The pivotal part of the integration allows recursive definitions to define generic judgments in general and not just the simpler atomic judgments that are traditionally allowed. The usefulness of this logic is illustrated by showing how it can provide elegant treatments of objectlogic contexts that appear in proofs involving typing calculi and arbitrarily cascading substitutions in reducibility arguments.