Results 1 
5 of
5
The essence of dataflow programming
 In APLAS
, 2005
"... Abstract. We propose a novel, comonadic approach to dataflow (streambased) computation. This is based on the observation that both general and causal stream functions can be characterized as coKleisli arrows of comonads and on the intuition that comonads in general must be a good means to structure ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
Abstract. We propose a novel, comonadic approach to dataflow (streambased) computation. This is based on the observation that both general and causal stream functions can be characterized as coKleisli arrows of comonads and on the intuition that comonads in general must be a good means to structure contextdependent computation. In particular, we develop a generic comonadic interpreter of languages for contextdependent computation and instantiate it for streambased computation. We also discuss distributive laws of a comonad over a monad as a means to structure combinations of effectful and contextdependent computation. We apply the latter to analyse clocked dataflow (partial stream based) computation. 1
Fixed points of type constructors and primitive recursion
 Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 2024, 2004, Proceedings, volume 3210 of Lecture Notes in Computer Science
, 2004
"... Our contribution to CSL 04 [AM04] contains a little error, which is easily corrected by 2 elementary editing steps (replacing one character and deleting another). Definition of wellformed contexts (fifth page). Typing contexts should, in contrast to kinding contexts, only contain type variable decla ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Our contribution to CSL 04 [AM04] contains a little error, which is easily corrected by 2 elementary editing steps (replacing one character and deleting another). Definition of wellformed contexts (fifth page). Typing contexts should, in contrast to kinding contexts, only contain type variable declarations without variance information. Hence, the second rule is too liberal; we must insist on p = ◦. The corrected set of rules is then: ⋄ cxt ∆ cxt ∆, X ◦κ cxt ∆ cxt ∆ ⊢ A: ∗ ∆, x:A cxt Definition of welltyped terms (immediately following). Since wellformed typing contexts ∆ contain no variance information, hence ◦ ∆ = ∆, we might drop the “◦ ” in the instantiation rule (fifth rule). The new set of rules is consequently, (x:A) ∈ ∆ ∆ cxt ∆ ⊢ x: A ∆, X ◦κ ⊢ t: A ∆ ⊢ t: ∀X κ. A ∆, x:A ⊢ t: B ∆ ⊢ λx.t: A → B ∆ ⊢ t: ∀X κ. A ∆ ⊢ F: κ
Categorical Views on Computations on Trees (Extended Abstract)
"... Abstract. Computations on trees form a classical topic in computing. These computations can be described in terms of machines (typically called tree transducers), or in terms of functions. This paper focuses on three flavors of bottomup computations, of increasing generality. It brings categorical ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. Computations on trees form a classical topic in computing. These computations can be described in terms of machines (typically called tree transducers), or in terms of functions. This paper focuses on three flavors of bottomup computations, of increasing generality. It brings categorical clarity by identifying a category of tree transducers together with two different behavior functors. The first sends a tree transducer to a coKleisli or biKleisli map (describing the contribution of each local node in an input tree to the global transformation) and the second to a tree function (the global tree transformation). The first behavior functor has an adjoint realization functor, like in Goguen’s early work on automata. Further categorical structure, in the form of Hughes’s Arrows, appears in properly parameterized versions of these structures. 1
The essence of dataflow programming (short version
 Proc. of 3rd Asian Symp. on Programming Languages and Systems, APLAS 2005, v. 3780 of Lect. Notes in Comput. Sci
, 2005
"... Abstract. We propose a novel, comonadic approach to dataflow (streambased) computation. This is based on the observation that both general and causal stream functions can be characterized as coKleisli arrows of comonads and on the intuition that comonads in general must be a good means to structure ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. We propose a novel, comonadic approach to dataflow (streambased) computation. This is based on the observation that both general and causal stream functions can be characterized as coKleisli arrows of comonads and on the intuition that comonads in general must be a good means to structure contextdependent computation. In particular, we develop a generic comonadic interpreter of languages for contextdependent computation and instantiate it for streambased computation. We also discuss distributive laws of a comonad over a monad as a means to structure combinations of effectful and contextdependent computation. We apply the latter to analyse clocked dataflow (partial stream based) computation. 1
Verification of the Redecoration Algorithm for Triangular Matrices
, 2007
"... Abstract. Triangular matrices with a dedicated type for the diagonal elements can be profitably represented by a nested datatype, i. e., a heterogeneous family of inductive datatypes. These families are fully supported since the version 8.1 of the Coq theorem proving environment, released in 2007. R ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. Triangular matrices with a dedicated type for the diagonal elements can be profitably represented by a nested datatype, i. e., a heterogeneous family of inductive datatypes. These families are fully supported since the version 8.1 of the Coq theorem proving environment, released in 2007. Redecoration of triangular matrices has a succinct implementation in this representation, thus giving the challenge of proving it correct. This has been achieved within Coq, using also induction with measures. An axiomatic approach allowed a verification in the Isabelle theorem prover, giving insights about the differences of both systems. 1