Results 1  10
of
188
Intelligence without reason
 COMPUTERS AND THOUGHT, IJCAI91
, 1991
"... Computers and Thought are the two categories that together define Artificial Intelligence as a discipline. It is generally accepted that work in Artificial Intelligence over the last thirty years has had a strong influence on aspects of computer architectures. In this paper we also make the conver ..."
Abstract

Cited by 755 (9 self)
 Add to MetaCart
Computers and Thought are the two categories that together define Artificial Intelligence as a discipline. It is generally accepted that work in Artificial Intelligence over the last thirty years has had a strong influence on aspects of computer architectures. In this paper we also make the converse claim; that the state of computer architecture has been a strong influence on our models of thought. The Von Neumann model of computation has lead Artificial Intelligence in particular directions. Intelligence in biological systems is completely different. Recent work in behaviorbased Artificial Intelligence has produced new models of intelligence that are much closer in spirit to biological systems. The nonVon Neumann computational models they use share many characteristics with biological computation.
Threedimensional object recognition from single twodimensional images
 Artificial Intelligence
, 1987
"... A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single grayscale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottomup from the visual input. Instead, ..."
Abstract

Cited by 384 (7 self)
 Add to MetaCart
A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single grayscale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottomup from the visual input. Instead, three other mechanisms are used that can bridge the gap between the twodimensional image and knowledge of threedimensional objects. First, a process of perceptual organization is used to form groupings and structures in the image that are likely to be invariant over a wide range of viewpoints. Second, a probabilistic ranking method is used to reduce the size of the search space during model based matching. Finally, a process of spatial correspondence brings the projections of threedimensional models into direct correspondence with the image by solving for unknown viewpoint and model parameters. A high level of robustness in the presence of occlusion and missing data can be achieved through full application of a viewpoint consistency constraint. It is argued that similar mechanisms and constraints form the basis for recognition in human vision. This paper has been published in Artificial Intelligence, 31, 3 (March 1987), pp. 355–395. 1 1
Fitting Parameterized ThreeDimensional Models to Images
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1991
"... Modelbased recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3D model to matching 2D image features. This paper extends current methods of parameter solving to handle objects with arbitrary curved surfaces and with any nu ..."
Abstract

Cited by 286 (8 self)
 Add to MetaCart
Modelbased recognition and motion tracking depends upon the ability to solve for projection and model parameters that will best fit a 3D model to matching 2D image features. This paper extends current methods of parameter solving to handle objects with arbitrary curved surfaces and with any number of internal parameters representing articulations, variable dimensions, or surface deformations. Numerical
Edge Detection and Ridge Detection with Automatic Scale Selection
 CVPR'96
, 1996
"... When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of ..."
Abstract

Cited by 247 (20 self)
 Add to MetaCart
When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting onedimensional features, such as edges and ridges. Anovel concept of a scalespace edge is introduced, defined as a connected set of points in scalespace at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important property of this definition is that it allows the scale levels to vary along the edge. Two specific measures of edge strength are analysed in detail. It is shown that by expressing these in terms of γnormalized derivatives, an immediate consequence of this definition is that fine scales are selected for sharp edges (so as to reduce the shape distortions due to scalespace smoothing), whereas coarse scales are selected for diffuse edges, such that an edge model constitutes a valid abstraction of the intensity profile across the edge. With slight modifications, this idea can be used for formulating a ridge detector with automatic scale selection, having the characteristic property that the selected scales on a scalespace ridge instead reflect the width of the ridge.
A HeadMounted ThreeDimensional Display
 AFIPS Conference Proceedings (1968) 33, I
"... The fundamental idea behind the threedimensional display is to present the user with a perspective image which changes as he moves. The retinal image of the real objects which we see is, after all, only twodimensional. ..."
Abstract

Cited by 213 (0 self)
 Add to MetaCart
The fundamental idea behind the threedimensional display is to present the user with a perspective image which changes as he moves. The retinal image of the real objects which we see is, after all, only twodimensional.
SUSAN  A New Approach to Low Level Image Processing
 International Journal of Computer Vision
, 1995
"... This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction. ..."
Abstract

Cited by 205 (3 self)
 Add to MetaCart
This paper describes a new approach to low level image processing; in particular, edge and corner detection and structure preserving noise reduction.
ModelBased Object Pose in 25 Lines of Code
 International Journal of Computer Vision
, 1995
"... In this paper, we describe a method for finding the pose of an object from a single image. We assume that we can detect and match in the image four or more noncoplanar feature points of the object, and that we know their relative geometry on the object. The method combines two algorithms ..."
Abstract

Cited by 198 (4 self)
 Add to MetaCart
In this paper, we describe a method for finding the pose of an object from a single image. We assume that we can detect and match in the image four or more noncoplanar feature points of the object, and that we know their relative geometry on the object. The method combines two algorithms
Canonic Representations for the Geometries of Multiple Projective Views
 Computer Vision and Image Understanding
, 1994
"... This work is in the context of motion and stereo analysis. It presents a new uni ed representation which will be useful when dealing with multiple views in the case of uncalibrated cameras. Several levels of information might be considered, depending on the availability of information. Among other t ..."
Abstract

Cited by 180 (8 self)
 Add to MetaCart
This work is in the context of motion and stereo analysis. It presents a new uni ed representation which will be useful when dealing with multiple views in the case of uncalibrated cameras. Several levels of information might be considered, depending on the availability of information. Among other things, an algebraic description of the epipolar geometry of N views is introduced, as well as a framework for camera selfcalibration, calibration updating, and structure from motion in an image sequence taken by a camera which is zooming and moving at the same time. We show how a special decomposition of a set of two or three general projection matrices, called canonical enables us to build geometric descriptions for a system of cameras which are invariant with respect to a given group of transformations. These representations are minimal and capture completely the properties of each level of description considered: Euclidean (in the context of calibration, and in the context of structure from motion, which we distinguish clearly), a ne, and projective, that we also relate to each other. In the last case, a new decomposition of the wellknown fundamental matrix is obtained. Dependencies, which appear when three or more views are available, are studied in the context of the canonic decomposition, and new composition formulas are established. The theory is illustrated by tutorial examples with real images.
BSpline Signal Processing: Part ITheory
 IEEE Trans. Signal Processing
, 1993
"... This paper describes a set of efficient filtering techniques for the processing and representation of signals in terms of continuous Bspline basis functions. We first consider the problem of determining the spline coefficients for an exact signal interpolation (direct Bspline transform). The rever ..."
Abstract

Cited by 116 (24 self)
 Add to MetaCart
This paper describes a set of efficient filtering techniques for the processing and representation of signals in terms of continuous Bspline basis functions. We first consider the problem of determining the spline coefficients for an exact signal interpolation (direct Bspline transform). The reverse operation is the signal reconstruction from its spline coefficients with an optional zooming factor rn (indirect Bspline transform) . We derive general expressions for the z transforms and the equivalent continuous impulse responses of Bspline interpolators of order n. We present simple techniques for signal differentiation and filtering in the transformed domain. We then derive recursive filters that efficiently solve the problems of smoothing spline and least squares approximations. The smoothing spline technique approximates a signal with a complete set of coefficients subject to certain regularization or smoothness constraints. The least squares approach, on the other hand, uses a reduced number of Bspline coefficients with equally spaced nodes; this technique is in many ways analogous to the application of antialiasing lowpass filter prior to decimation in order to represent a signal correctly with a reduced number of samples.