Results 1  10
of
160
Wrappers for feature subset selection
 ARTIFICIAL INTELLIGENCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1023 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach and show a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 594 (23 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend not only on the features and the target concept, but also on the induction algorithm. We describe a method for feature subset selection using crossvalidation that is applicable to any induction algorithm, and discuss experiments conducted with ID3 and C4.5 on artificial and real datasets.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Induction of Selective Bayesian Classifiers
 CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
, 1994
"... In this paper, we examine previous work on the naive Bayesian classifier and review its limitations, which include a sensitivity to correlated features. We respond to this problem by embedding the naive Bayesian induction scheme within an algorithm that carries out a greedy search through the space ..."
Abstract

Cited by 208 (7 self)
 Add to MetaCart
In this paper, we examine previous work on the naive Bayesian classifier and review its limitations, which include a sensitivity to correlated features. We respond to this problem by embedding the naive Bayesian induction scheme within an algorithm that carries out a greedy search through the space of features. We hypothesize that this approach will improve asymptotic accuracy in domains that involve correlated features without reducing the rate of learning in ones that do not. We report experimental results on six natural domains, including comparisons with decisiontree induction, that support these hypotheses. In closing, we discuss other approaches to extending naive Bayesian classifiers and outline some directions for future research.
Automatic Construction of Decision Trees from Data: A MultiDisciplinary Survey
 Data Mining and Knowledge Discovery
, 1997
"... Decision trees have proved to be valuable tools for the description, classification and generalization of data. Work on constructing decision trees from data exists in multiple disciplines such as statistics, pattern recognition, decision theory, signal processing, machine learning and artificial ne ..."
Abstract

Cited by 146 (1 self)
 Add to MetaCart
Decision trees have proved to be valuable tools for the description, classification and generalization of data. Work on constructing decision trees from data exists in multiple disciplines such as statistics, pattern recognition, decision theory, signal processing, machine learning and artificial neural networks. Researchers in these disciplines, sometimes working on quite different problems, identified similar issues and heuristics for decision tree construction. This paper surveys existing work on decision tree construction, attempting to identify the important issues involved, directions the work has taken and the current state of the art. Keywords: classification, treestructured classifiers, data compaction 1. Introduction Advances in data collection methods, storage and processing technology are providing a unique challenge and opportunity for automated data exploration techniques. Enormous amounts of data are being collected daily from major scientific projects e.g., Human Genome...
KnowledgeBased Artificial Neural Networks
, 1994
"... Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset informat ..."
Abstract

Cited by 145 (13 self)
 Add to MetaCart
Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset information missing from the other source. By so doing, a hybrid learning system should learn more effectively than systems that use only one of the information sources. KBANN(KnowledgeBased Artificial Neural Networks) is a hybrid learning system built on top of connectionist learning techniques. It maps problemspecific "domain theories", represented in propositional logic, into neural networks and then refines this reformulated knowledge using backpropagation. KBANN is evaluated by extensive empirical tests on two problems from molecular biology. Among other results, these tests show that the networks created by KBANN generalize better than a wide variety of learning systems, as well as several t...
Correlationbased feature selection for machine learning
, 1998
"... A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that ..."
Abstract

Cited by 139 (3 self)
 Add to MetaCart
A central problem in machine learning is identifying a representative set of features from which to construct a classification model for a particular task. This thesis addresses the problem of feature selection for machine learning through a correlation based approach. The central hypothesis is that good feature sets contain features that are highly correlated with the class, yet uncorrelated with each other. A feature evaluation formula, based on ideas from test theory, provides an operational definition of this hypothesis. CFS (Correlation based Feature Selection) is an algorithm that couples this evaluation formula with an appropriate correlation measure and a heuristic search strategy. CFS was evaluated by experiments on artificial and natural datasets. Three machine learning algorithms were used: C4.5 (a decision tree learner), IB1 (an instance based learner), and naive Bayes. Experiments on artificial datasets showed that CFS quickly identifies and screens irrelevant, redundant, and noisy features, and identifies relevant features as long as their relevance does not strongly depend on other features. On natural domains, CFS typically eliminated well over half the features. In most cases, classification accuracy using the reduced feature set equaled or bettered accuracy using the complete feature set.
Wrappers For Performance Enhancement And Oblivious Decision Graphs
, 1995
"... In this doctoral dissertation, we study three basic problems in machine learning and two new hypothesis spaces with corresponding learning algorithms. The problems we investigate are: accuracy estimation, feature subset selection, and parameter tuning. The latter two problems are related and are stu ..."
Abstract

Cited by 107 (8 self)
 Add to MetaCart
In this doctoral dissertation, we study three basic problems in machine learning and two new hypothesis spaces with corresponding learning algorithms. The problems we investigate are: accuracy estimation, feature subset selection, and parameter tuning. The latter two problems are related and are studied under the wrapper approach. The hypothesis spaces we investigate are: decision tables with a default majority rule (DTMs) and oblivious readonce decision graphs (OODGs).
Incremental concept formation algorithms based on Galois (concept) lattices
, 1995
"... . The Galois (or concept) lattice produced from a binary relation has been proved useful for many applications. Building the Galois lattice can be considered as a conceptual clustering method since it results in a concept hierarchy. This article presents incremental algorithms for updating the Galoi ..."
Abstract

Cited by 105 (9 self)
 Add to MetaCart
. The Galois (or concept) lattice produced from a binary relation has been proved useful for many applications. Building the Galois lattice can be considered as a conceptual clustering method since it results in a concept hierarchy. This article presents incremental algorithms for updating the Galois lattice and corresponding graph, resulting in an incremental concept formation method. Different strategies are considered based on a characterization of the modifications implied by such an update. Results of empirical tests are given in order to compare the performance of the incremental algorithms to three other batch algorithms. Surprisingly, when the total time for incremental generation is used, the simplest and less efficient variant of the incremental algorithms outperforms the batch algorithms in most cases. When only the incremental update time is used, the incremental algorithm outperforms all the batch algorithms. Empirical evidence shows that, on the average, the incremental u...
Iterative Optimization and Simplification of Hierarchical Clusterings
 Journal of Artificial Intelligence Research
, 1995
"... Clustering is often used for discovering structure in data. Clustering systems differ in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high qual ..."
Abstract

Cited by 103 (1 self)
 Add to MetaCart
Clustering is often used for discovering structure in data. Clustering systems differ in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can partition the search so that a system inexpensively constructs a `tentative' clustering for initial examination, followed by iterative optimization, which continues to search in background for improved clusterings. Given this motivation, we evaluate an inexpensive strategy for creating initial clusterings, coupled with several control strategies for iterative optimization, each of which repeatedly modifies an initial clustering in search of a better one. One of these methods appears novel as an iterative optimization strategy in clustering contexts. Once a clustering has been construct...