Results 1  10
of
39
Optimal Dynamic Interval Management in External Memory (Extended Abstract))
 IN PROC. IEEE SYMP. ON FOUNDATIONS OF COMP. SCI
, 1996
"... We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval m ..."
Abstract

Cited by 85 (23 self)
 Add to MetaCart
We present a space and I/Ooptimal externalmemory data structure for answering stabbing queries on a set of dynamically maintained intervals. Our data structure settles an open problem in databases and I/O algorithms by providing the first optimal externalmemory solution to the dynamic interval management problem, which is a special case of 2dimensional range searching and a central problem for objectoriented and temporal databases and for constraint logic programming. Our data structure simultaneously uses optimal linear space (that is, O(N/B) blocks of disk space) and achieves the optimal O(log B N + T/B) I/O query bound and O(log B N ) I/O update bound, where B is the I/O block size and T the number of elements in the answer to a query. Our structure is also the first optimal external data structure for a 2dimensional range searching problem that has worstcase as opposed to amortized update bounds. Part of the data structure uses a novel balancing technique for efficient worstcase manipulation of balanced trees, which is of independent interest.
New data structures for orthogonal range searching
 In Proc. 41st IEEE Symposium on Foundations of Computer Science
, 2000
"... ..."
Lower bounds for orthogonal range searching: I. the reporting case
 Journal of the ACM
, 1990
"... Abstract. We establish lower bounds on the complexity of orthogonal range reporting in the static case. Given a collection of n points in dspace and a box [a,, b,] x. x [ad, bd], report every point whose ith coordinate lies in [a,, biJ, for each i = 1,..., d. The collection of points is fixed once ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
Abstract. We establish lower bounds on the complexity of orthogonal range reporting in the static case. Given a collection of n points in dspace and a box [a,, b,] x. x [ad, bd], report every point whose ith coordinate lies in [a,, biJ, for each i = 1,..., d. The collection of points is fixed once and for all and can be preprocessed. The box, on the other hand, constitutes a query that must be answered online. It is shown that on a pointer machine a query time of O(k + polylog(n)), where k is the number of points to be reported, can only be achieved at the expense of fl(n(logn/loglogn)d‘) storage. Interestingly, these bounds are optimal in the pointer machine model, but they can be improved (ever so slightly) on a random access machine. In a companion paper, we address the related problem of adding up weights assigned to the points in the query box.
ClosestPoint Problems in Computational Geometry
, 1997
"... This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, th ..."
Abstract

Cited by 65 (14 self)
 Add to MetaCart
This is the preliminary version of a chapter that will appear in the Handbook on Computational Geometry, edited by J.R. Sack and J. Urrutia. A comprehensive overview is given of algorithms and data structures for proximity problems on point sets in IR D . In particular, the closest pair problem, the exact and approximate postoffice problem, and the problem of constructing spanners are discussed in detail. Contents 1 Introduction 1 2 The static closest pair problem 4 2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Algorithms that are optimal in the algebraic computation tree model . 5 2.2.1 An algorithm based on the Voronoi diagram . . . . . . . . . . . 5 2.2.2 A divideandconquer algorithm . . . . . . . . . . . . . . . . . . 5 2.2.3 A plane sweep algorithm . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A deterministic algorithm that uses indirect addressing . . . . . . . . . 7 2.3.1 The degraded grid . . . . . . . . . . . . . . . . . . ...
Range Queries in OLAP Data Cubes
 In Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data
, 1997
"... A range query applies an aggregation operation over all selected cells of an OLAP data cube where the selection is specified by providing ranges of values for numeric dimensions. We present fast algorithms for range queries for two types of aggregation operations: SUM and MAX. These two operations c ..."
Abstract

Cited by 59 (1 self)
 Add to MetaCart
A range query applies an aggregation operation over all selected cells of an OLAP data cube where the selection is specified by providing ranges of values for numeric dimensions. We present fast algorithms for range queries for two types of aggregation operations: SUM and MAX. These two operations cover techniques required for most popular aggregation operations, such as those supported by SQL. For rangesum queries, the essential idea is to precompute some auxiliary information (prefix sums) that is used to answer ad hoc queries at runtime. By maintaining auxiliary information which is of the same size as the data cube, all range queries for a given cube can be answered in constant time, irrespective of the size of the subcube circumscribed by a query. Alternatively, one can keep auxiliary information which is 1/b d of the size of the ddimensional data cube. Response to a range query may now require access to some cells of the data cube in addition to the access to the auxiliary ...
Proximity Problems on Moving Points
 In Proc. 13th Annu. ACM Sympos. Comput. Geom
, 1997
"... A kinetic data structure for the maintenance of a multidimensional range search tree is introduced. This structure is used as a building block to obtain kinetic data structures for two classical geometric proximity problems in arbitrary dimensions: the first structure maintains the closest pair o ..."
Abstract

Cited by 50 (15 self)
 Add to MetaCart
A kinetic data structure for the maintenance of a multidimensional range search tree is introduced. This structure is used as a building block to obtain kinetic data structures for two classical geometric proximity problems in arbitrary dimensions: the first structure maintains the closest pair of a set of continuously moving points, and is provably e#cient. The second structure maintains a spanning tree of the moving points whose cost remains within some prescribed factor of the minimum spanning tree. The method for maintaining the closest pair of points can be extended to the maintenance of closest pair of other distance functions which allows us to maintain the closest pair of a set of moving objects with similar sizes and of a set of points on a smooth manifold.
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
Dynamic Trees and Dynamic Point Location
 In Proc. 23rd Annu. ACM Sympos. Theory Comput
, 1991
"... This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using ..."
Abstract

Cited by 46 (11 self)
 Add to MetaCart
This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using a centroid decomposition of the dual tree to drive searches in the primal tree. These trees are maintained via the linkcut trees structure of Sleator and Tarjan, leading to a scheme that achieves vertex insertion/deletion in O(log n) time, insertion/deletion of kedge monotone chains in O(log n + k) time, and answers queries in O(log 2 n) time, with O(n) space, where n is the current size of subdivision S. The techniques described also allow for the dual operations expand and contract to be implemented in O(log n) time, leading to an improved method for spatial pointlocation in a 3dimensional convex subdivision. In addition, the interlacedtree approach is applied to online pointlo...
Efficient ExternalMemory Data Structures and Applications
, 1996
"... In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oeffic ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oefficient algorithms through the design of I/Oefficient data structures. One of our philosophies is to try to isolate all the I/O specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms from internal memory algorithms by exchanging the data structures used in internal memory with their external memory counterparts. The results in the thesis include a technique for transforming an internal memory tree data structure into an external data structure which can be used in a batched dynamic setting, that is, a setting where we for example do not require that the result of a search operation is returned immediately. Using this technique we develop batched dynamic external versions of the (onedimensional) rangetree and the segmenttree and we develop an external priority queue. Following our general philosophy we show how these structures can be used in standard internal memory sorting algorithms
Dynamic Euclidean Minimum Spanning Trees and Extrema of Binary Functions
, 1995
"... We maintain the minimum spanning tree of a point set in the plane, subject to point insertions and deletions, in amortized time O(n 1/2 log 2 n) per update operation. We reduce the problem to maintaining bichromatic closest pairs, which we solve in time O(n # ) per update. Our algorithm uses a novel ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
We maintain the minimum spanning tree of a point set in the plane, subject to point insertions and deletions, in amortized time O(n 1/2 log 2 n) per update operation. We reduce the problem to maintaining bichromatic closest pairs, which we solve in time O(n # ) per update. Our algorithm uses a novel construction, the ordered nearest neighbor path of a set of points. Our results generalize to higher dimensions, and to fully dynamic algorithms for maintaining minima of binary functions, including the diameter of a point set and the bichromatic farthest pair. 1 Introduction A dynamic geometric data structure is one that maintains the solution to some problem, defined on a geometric input such as a point set, as the input undergoes update operations such as insertions or deletions of single points. Dynamic algorithms have been studied for many geometric optimization problems, including closest pairs [7, 23, 25, 26], diameter [7, 26], width [4], convex hulls [15, 22], linear ...