Results 1  10
of
55
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
 Machine Learning
, 1997
"... We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MD ..."
Abstract

Cited by 178 (10 self)
 Add to MetaCart
We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MDL approximation. We also consider approximations proposed by Draper (1993) and Cheeseman and Stutz (1995). These approximations are as efficient as BIC/MDL, but their accuracy has not been studied in any depth. We compare the accuracy of these approximations under the assumption that the Laplace approximation is the most accurate. In experiments using synthetic data generated from discrete naiveBayes models having a hidden root node, we find that (1) the BIC/MDL measure is the least accurate, having a bias in favor of simple models, and (2) the Draper and CS measures are the most accurate. 1
Optimal Structure Identification with Greedy Search
, 2002
"... In this paper we prove the socalled "Meek Conjecture". In particular, we show that if a is an independence map of another DAG then there exists a finite sequence of edge additions and covered edge reversals in such that (1) after each edge modification and (2) after all modifications ..."
Abstract

Cited by 161 (1 self)
 Add to MetaCart
In this paper we prove the socalled "Meek Conjecture". In particular, we show that if a is an independence map of another DAG then there exists a finite sequence of edge additions and covered edge reversals in such that (1) after each edge modification and (2) after all modifications H.
Informationtheoretic asymptotics of Bayes methods
 IEEE Transactions on Information Theory
, 1990
"... AbstractIn the absence of knowledge of the true density function, Bayesian models take the joint density function for a sequence of n random variables to be an average of densities with respect to a prior. We examine the relative entropy distance D,, between the true density and the Bayesian densit ..."
Abstract

Cited by 107 (10 self)
 Add to MetaCart
AbstractIn the absence of knowledge of the true density function, Bayesian models take the joint density function for a sequence of n random variables to be an average of densities with respect to a prior. We examine the relative entropy distance D,, between the true density and the Bayesian density and show that the asymptotic distance is (d/2Xlogn)+ c, where d is the dimension of the parameter vector. Therefore, the relative entropy rate D,,/n converges to zero at rate (logn)/n. The constant c, which we explicitly identify, depends only on the prior density function and the Fisher information matrix evaluated at the true parameter value. Consequences are given for density estimation, universal data compression, composite hypothesis testing, and stockmarket portfolio selection. 1.
Bayes factors and model uncertainty
 DEPARTMENT OF STATISTICS, UNIVERSITY OFWASHINGTON
, 1993
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of Pvalues, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor ofa null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "nonstandard " statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive nonBayesian significance
ANCESTRAL GRAPH MARKOV MODELS
, 2002
"... This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of verti ..."
Abstract

Cited by 76 (18 self)
 Add to MetaCart
This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple parameterization of the corresponding set of distributions in the Gaussian case.
Bayesian Model Selection and Model Averaging
, 1999
"... This paper reviews the Bayesian approach to model selection and model averaging. In this review, I emphasize objective Bayesian methods based on noninformative priors. I will also discuss implementation details, approximations and relationships to other methods. KEY WORDS AND PHRASES: AIC, Bayes Fac ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
This paper reviews the Bayesian approach to model selection and model averaging. In this review, I emphasize objective Bayesian methods based on noninformative priors. I will also discuss implementation details, approximations and relationships to other methods. KEY WORDS AND PHRASES: AIC, Bayes Factors, BIC, Consistency, Default Bayes Methods, Markov Chain Monte Carlo.
The consistency of the BIC Markov order estimator.
"... . The Bayesian Information Criterion (BIC) estimates the order of a Markov chain (with finite alphabet A) from observation of a sample path x 1 ; x 2 ; : : : ; x n , as that value k = k that minimizes the sum of the negative logarithm of the kth order maximum likelihood and the penalty term jAj ..."
Abstract

Cited by 55 (3 self)
 Add to MetaCart
. The Bayesian Information Criterion (BIC) estimates the order of a Markov chain (with finite alphabet A) from observation of a sample path x 1 ; x 2 ; : : : ; x n , as that value k = k that minimizes the sum of the negative logarithm of the kth order maximum likelihood and the penalty term jAj k (jAj\Gamma1) 2 log n: We show that k equals the correct order of the chain, eventually almost surely as n ! 1, thereby strengthening earlier consistency results that assumed an apriori bound on the order. A key tool is a strong ratiotypicality result for Markov sample paths. We also show that the Bayesian estimator or minimum description length estimator, of which the BIC estimator is an approximation, fails to be consistent for the uniformly distributed i.i.d. process. AMS 1991 subject classification: Primary 62F12, 62M05; Secondary 62F13, 60J10 Key words and phrases: Bayesian Information Criterion, order estimation, ratiotypicality, Markov chains. 1 Supported in part by a joint N...
Stratified exponential families: Graphical models and model selection
 Annals of Statistics
, 2001
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JS ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Asymptotic model selection for directed networks with hidden variables
, 1996
"... We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a ..."
Abstract

Cited by 49 (15 self)
 Add to MetaCart
We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a model according to the dimension of its parameters. We argue that the dimension of a Bayesian network with hidden variables is the rank of the Jacobian matrix of the transformation between the parameters of the network and the parameters of the observable variables. We compute the dimensions of several networks including the naive Bayes model with a hidden root node. 1