Results 1 
5 of
5
Hereditarily Sequential Functionals
 In Proceedings of the Symposium on Logical Foundations of Computer Science: Logic at St. Petersburg, Lecture notes in Computer Science
, 1994
"... In order to define models of simply typed functional programming languages being closer to the operational semantics of these languages, the notions of sequentiality, stability and seriality were introduced. These works originated from the definability problem for PCF, posed in [Sco72], and the full ..."
Abstract

Cited by 59 (0 self)
 Add to MetaCart
In order to define models of simply typed functional programming languages being closer to the operational semantics of these languages, the notions of sequentiality, stability and seriality were introduced. These works originated from the definability problem for PCF, posed in [Sco72], and the full abstraction problem for PCF, raised in [Plo77]. The presented computation model, forming the class of hereditarily sequential functionals, is based on a game in which each play describes the interaction between a functional and its arguments during a computation. This approach is influenced by the work of Kleene [Kle78], Gandy [Gan67], Kahn and Plotkin [KP78], Berry and Curien [BC82, Cur86, Cur92], and Cartwright and Felleisen [CF92]. We characterize the computable elements in this model in two different ways: (a) by recursiveness requirements for the game, and (b) as definability with the schemata (S1) (S8), (S11), which is related to definability in PCF. It turns out that both definitio...
Characterizations of the Basic Feasible Functionals of Finite Type (Extended Abstract)
 Feasible Mathematics: A Mathematical Sciences Institute Workshop
, 1990
"... Stephen A. Cook and Bruce M. Kapron Department of Computer Science University of Toronto Toronto, Canada M5S 1A4 1 Introduction Functionals are functions which take natural numbers and other functionals as arguments and return natural numbers as values. The class of "feasible" functionals of finit ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
Stephen A. Cook and Bruce M. Kapron Department of Computer Science University of Toronto Toronto, Canada M5S 1A4 1 Introduction Functionals are functions which take natural numbers and other functionals as arguments and return natural numbers as values. The class of "feasible" functionals of finite type was introduced in [6] via the typed lambda calculus, and used to interpret certain formal systems of arithmetic: systems capturing the notion of "feasibly constructive proof" (we equate feasibility with polynomial time computability) . Here we name the functionals of [6] the basic feasible functionals and justify the designation by presenting results which include two programming style characterizations of the class. We also give examples of both feasible and infeasible functionals, and argue that the notion plays a natural role in complexity theory. Type 2 functionals take numbers and ordinary numerical functions as arguments. When these argument functions are 01 valued (i.e. sets) ...
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Finite Notations for Infinite Terms
, 1998
"... In [1] Buchholz presented a method to build notation systems for infinite sequentstyle derivations, analogous to wellknown systems of notation for ordinals. The essential feature is that from a notation one can read off by a primitive (not " 0 ) recursive function its nth predecessor and e.g. t ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
In [1] Buchholz presented a method to build notation systems for infinite sequentstyle derivations, analogous to wellknown systems of notation for ordinals. The essential feature is that from a notation one can read off by a primitive (not " 0 ) recursive function its nth predecessor and e.g. the last rule applied. Here we extend the method to the more general setting of infinite (typed) terms, in order to make it applicable in other prooftheoretic contexts as well as in recursion theory. As examples, we use the method to (1) give a new proof of a wellknown tradeoff theorem [6], which says that detours through higher types can be eliminated by the use of transfinite recursion along higher ordinals, and (2) construct a continuous normalization operator with an explicit modulus of continuity. It is well known that in order to study primitive recursion in higher types it is useful to unfold the primitive recursion operators into infinite terms. A similar phenomenon occurs in proo...